Properties

Label 14.3e10_251e10_69073e10.42t413.1
Dimension 14
Group $S_7$
Conductor $ 3^{10} \cdot 251^{10} \cdot 69073^{10}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$14$
Group:$S_7$
Conductor:$144888177727408710869663479942909426502474178962199947314291070853637766460801= 3^{10} \cdot 251^{10} \cdot 69073^{10} $
Artin number field: Splitting field of $f= x^{7} - 3 x^{6} - 3 x^{5} + 13 x^{4} - x^{3} - 13 x^{2} + 4 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 42T413
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 239 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 239 }$: $ x^{2} + 237 x + 7 $
Roots:
$r_{ 1 }$ $=$ $ 7 a + 6 + \left(145 a + 28\right)\cdot 239 + \left(209 a + 121\right)\cdot 239^{2} + \left(204 a + 32\right)\cdot 239^{3} + \left(233 a + 77\right)\cdot 239^{4} +O\left(239^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 217 a + 199 + \left(92 a + 213\right)\cdot 239 + \left(144 a + 26\right)\cdot 239^{2} + \left(64 a + 112\right)\cdot 239^{3} + \left(60 a + 149\right)\cdot 239^{4} +O\left(239^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 232 a + 20 + \left(93 a + 72\right)\cdot 239 + \left(29 a + 156\right)\cdot 239^{2} + \left(34 a + 232\right)\cdot 239^{3} + \left(5 a + 100\right)\cdot 239^{4} +O\left(239^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 134 + 93\cdot 239 + 122\cdot 239^{2} + 117\cdot 239^{3} + 200\cdot 239^{4} +O\left(239^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 22 a + 155 + \left(146 a + 182\right)\cdot 239 + \left(94 a + 222\right)\cdot 239^{2} + \left(174 a + 96\right)\cdot 239^{3} + \left(178 a + 205\right)\cdot 239^{4} +O\left(239^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 27 + 235\cdot 239 + 68\cdot 239^{2} + 41\cdot 239^{3} + 195\cdot 239^{4} +O\left(239^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 179 + 130\cdot 239 + 237\cdot 239^{2} + 83\cdot 239^{3} + 27\cdot 239^{4} +O\left(239^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$
$1$ $1$ $()$ $14$
$21$ $2$ $(1,2)$ $-6$
$105$ $2$ $(1,2)(3,4)(5,6)$ $-2$
$105$ $2$ $(1,2)(3,4)$ $2$
$70$ $3$ $(1,2,3)$ $2$
$280$ $3$ $(1,2,3)(4,5,6)$ $-1$
$210$ $4$ $(1,2,3,4)$ $0$
$630$ $4$ $(1,2,3,4)(5,6)$ $0$
$504$ $5$ $(1,2,3,4,5)$ $-1$
$210$ $6$ $(1,2,3)(4,5)(6,7)$ $2$
$420$ $6$ $(1,2,3)(4,5)$ $0$
$840$ $6$ $(1,2,3,4,5,6)$ $1$
$720$ $7$ $(1,2,3,4,5,6,7)$ $0$
$504$ $10$ $(1,2,3,4,5)(6,7)$ $-1$
$420$ $12$ $(1,2,3,4)(5,6,7)$ $0$
The blue line marks the conjugacy class containing complex conjugation.