Properties

Label 14.3953927e9.30t565.1c1
Dimension 14
Group $S_7$
Conductor $ 3953927^{9}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$14$
Group:$S_7$
Conductor:$236187996055758407759318150300668976333175130724142986198087= 3953927^{9} $
Artin number field: Splitting field of $f= x^{7} - 5 x^{5} + 6 x^{3} - x^{2} - x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 30T565
Parity: Odd
Determinant: 1.3953927.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 263 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 263 }$: $ x^{2} + 261 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 133 a + 38 + \left(48 a + 27\right)\cdot 263 + \left(110 a + 166\right)\cdot 263^{2} + \left(72 a + 96\right)\cdot 263^{3} + \left(257 a + 184\right)\cdot 263^{4} +O\left(263^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 31 a + 25 + \left(52 a + 181\right)\cdot 263 + \left(191 a + 46\right)\cdot 263^{2} + \left(195 a + 91\right)\cdot 263^{3} + \left(74 a + 47\right)\cdot 263^{4} +O\left(263^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 210 + 153\cdot 263 + 79\cdot 263^{2} + 86\cdot 263^{3} + 235\cdot 263^{4} +O\left(263^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 130 a + 41 + \left(214 a + 254\right)\cdot 263 + \left(152 a + 74\right)\cdot 263^{2} + \left(190 a + 131\right)\cdot 263^{3} + \left(5 a + 100\right)\cdot 263^{4} +O\left(263^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 5 a + 189 + \left(162 a + 62\right)\cdot 263 + \left(123 a + 111\right)\cdot 263^{2} + \left(63 a + 44\right)\cdot 263^{3} + \left(137 a + 136\right)\cdot 263^{4} +O\left(263^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 232 a + 87 + \left(210 a + 254\right)\cdot 263 + \left(71 a + 113\right)\cdot 263^{2} + \left(67 a + 28\right)\cdot 263^{3} + \left(188 a + 1\right)\cdot 263^{4} +O\left(263^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 258 a + 199 + \left(100 a + 118\right)\cdot 263 + \left(139 a + 196\right)\cdot 263^{2} + \left(199 a + 47\right)\cdot 263^{3} + \left(125 a + 84\right)\cdot 263^{4} +O\left(263^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$14$
$21$$2$$(1,2)$$-4$
$105$$2$$(1,2)(3,4)(5,6)$$0$
$105$$2$$(1,2)(3,4)$$2$
$70$$3$$(1,2,3)$$-1$
$280$$3$$(1,2,3)(4,5,6)$$2$
$210$$4$$(1,2,3,4)$$2$
$630$$4$$(1,2,3,4)(5,6)$$0$
$504$$5$$(1,2,3,4,5)$$-1$
$210$$6$$(1,2,3)(4,5)(6,7)$$-1$
$420$$6$$(1,2,3)(4,5)$$-1$
$840$$6$$(1,2,3,4,5,6)$$0$
$720$$7$$(1,2,3,4,5,6,7)$$0$
$504$$10$$(1,2,3,4,5)(6,7)$$1$
$420$$12$$(1,2,3,4)(5,6,7)$$-1$
The blue line marks the conjugacy class containing complex conjugation.