Properties

Label 14.382631e9.30t565.1
Dimension 14
Group $S_7$
Conductor $ 382631^{9}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$14$
Group:$S_7$
Conductor:$175801013754885269200826036529004793288203199460071= 382631^{9} $
Artin number field: Splitting field of $f= x^{7} - x^{5} + x^{3} - x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 30T565
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 103 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 103 }$: $ x^{2} + 102 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 2 a + 70 + \left(35 a + 89\right)\cdot 103 + \left(31 a + 99\right)\cdot 103^{2} + \left(24 a + 3\right)\cdot 103^{3} + \left(88 a + 70\right)\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 55 a + 3 + \left(50 a + 68\right)\cdot 103 + \left(39 a + 54\right)\cdot 103^{2} + \left(27 a + 21\right)\cdot 103^{3} + \left(21 a + 78\right)\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 48 a + 58 + \left(52 a + 63\right)\cdot 103 + \left(63 a + 43\right)\cdot 103^{2} + \left(75 a + 9\right)\cdot 103^{3} + \left(81 a + 72\right)\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 101 a + 72 + \left(67 a + 19\right)\cdot 103 + \left(71 a + 96\right)\cdot 103^{2} + \left(78 a + 99\right)\cdot 103^{3} + \left(14 a + 30\right)\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 19 + 14\cdot 103 + 53\cdot 103^{2} + 69\cdot 103^{3} + 50\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 101 + 77\cdot 103 + 66\cdot 103^{2} + 92\cdot 103^{3} + 70\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 89 + 78\cdot 103 + 100\cdot 103^{2} + 11\cdot 103^{3} + 39\cdot 103^{4} +O\left(103^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$
$1$ $1$ $()$ $14$
$21$ $2$ $(1,2)$ $-4$
$105$ $2$ $(1,2)(3,4)(5,6)$ $0$
$105$ $2$ $(1,2)(3,4)$ $2$
$70$ $3$ $(1,2,3)$ $-1$
$280$ $3$ $(1,2,3)(4,5,6)$ $2$
$210$ $4$ $(1,2,3,4)$ $2$
$630$ $4$ $(1,2,3,4)(5,6)$ $0$
$504$ $5$ $(1,2,3,4,5)$ $-1$
$210$ $6$ $(1,2,3)(4,5)(6,7)$ $-1$
$420$ $6$ $(1,2,3)(4,5)$ $-1$
$840$ $6$ $(1,2,3,4,5,6)$ $0$
$720$ $7$ $(1,2,3,4,5,6,7)$ $0$
$504$ $10$ $(1,2,3,4,5)(6,7)$ $1$
$420$ $12$ $(1,2,3,4)(5,6,7)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.