Properties

Label 14.37e4_20357e4.21t38.1
Dimension 14
Group $S_7$
Conductor $ 37^{4} \cdot 20357^{4}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$14$
Group:$S_7$
Conductor:$321856291415192220977761= 37^{4} \cdot 20357^{4} $
Artin number field: Splitting field of $f= x^{7} - x^{6} - x^{5} + 4 x^{4} - 3 x^{3} - x^{2} + 3 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 21T38
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 71 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 71 }$: $ x^{2} + 69 x + 7 $
Roots:
$r_{ 1 }$ $=$ $ 28 a + 45 + \left(27 a + 49\right)\cdot 71 + \left(6 a + 17\right)\cdot 71^{2} + \left(2 a + 56\right)\cdot 71^{3} + \left(6 a + 68\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 55 a + 21 + \left(14 a + 38\right)\cdot 71 + \left(2 a + 53\right)\cdot 71^{2} + \left(20 a + 22\right)\cdot 71^{3} + \left(68 a + 57\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 47 a + 56 + \left(59 a + 22\right)\cdot 71 + 8 a\cdot 71^{2} + \left(19 a + 34\right)\cdot 71^{3} + \left(14 a + 27\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 16 a + 60 + \left(56 a + 12\right)\cdot 71 + \left(68 a + 43\right)\cdot 71^{2} + \left(50 a + 60\right)\cdot 71^{3} + \left(2 a + 31\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 43 a + 30 + \left(43 a + 5\right)\cdot 71 + \left(64 a + 3\right)\cdot 71^{2} + \left(68 a + 54\right)\cdot 71^{3} + \left(64 a + 7\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 24 a + 8 + \left(11 a + 24\right)\cdot 71 + \left(62 a + 29\right)\cdot 71^{2} + \left(51 a + 63\right)\cdot 71^{3} + \left(56 a + 36\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 65 + 59\cdot 71 + 65\cdot 71^{2} + 63\cdot 71^{3} + 53\cdot 71^{4} +O\left(71^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$
$1$ $1$ $()$ $14$
$21$ $2$ $(1,2)$ $6$
$105$ $2$ $(1,2)(3,4)(5,6)$ $2$
$105$ $2$ $(1,2)(3,4)$ $2$
$70$ $3$ $(1,2,3)$ $2$
$280$ $3$ $(1,2,3)(4,5,6)$ $-1$
$210$ $4$ $(1,2,3,4)$ $0$
$630$ $4$ $(1,2,3,4)(5,6)$ $0$
$504$ $5$ $(1,2,3,4,5)$ $-1$
$210$ $6$ $(1,2,3)(4,5)(6,7)$ $2$
$420$ $6$ $(1,2,3)(4,5)$ $0$
$840$ $6$ $(1,2,3,4,5,6)$ $-1$
$720$ $7$ $(1,2,3,4,5,6,7)$ $0$
$504$ $10$ $(1,2,3,4,5)(6,7)$ $1$
$420$ $12$ $(1,2,3,4)(5,6,7)$ $0$
The blue line marks the conjugacy class containing complex conjugation.