Properties

Label 14.3689911e4.21t38.1c1
Dimension 14
Group $S_7$
Conductor $ 3689911^{4}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$14$
Group:$S_7$
Conductor:$185380293203504363320302241= 3689911^{4} $
Artin number field: Splitting field of $f= x^{7} - 2 x^{6} - x^{5} + 4 x^{4} - 5 x^{3} + 4 x^{2} + x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 21T38
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 251 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 251 }$: $ x^{2} + 242 x + 6 $
Roots:
$r_{ 1 }$ $=$ $ 6 a + 30 + \left(86 a + 183\right)\cdot 251 + \left(118 a + 116\right)\cdot 251^{2} + \left(110 a + 229\right)\cdot 251^{3} + \left(7 a + 194\right)\cdot 251^{4} +O\left(251^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 100 a + 165 + \left(78 a + 209\right)\cdot 251 + \left(138 a + 147\right)\cdot 251^{2} + \left(212 a + 47\right)\cdot 251^{3} + \left(56 a + 216\right)\cdot 251^{4} +O\left(251^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 245 a + 84 + \left(164 a + 198\right)\cdot 251 + \left(132 a + 91\right)\cdot 251^{2} + \left(140 a + 101\right)\cdot 251^{3} + \left(243 a + 151\right)\cdot 251^{4} +O\left(251^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 63 a + 83 + \left(160 a + 112\right)\cdot 251 + \left(97 a + 169\right)\cdot 251^{2} + \left(18 a + 126\right)\cdot 251^{3} + \left(176 a + 133\right)\cdot 251^{4} +O\left(251^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 151 a + 61 + \left(172 a + 62\right)\cdot 251 + \left(112 a + 59\right)\cdot 251^{2} + \left(38 a + 65\right)\cdot 251^{3} + \left(194 a + 13\right)\cdot 251^{4} +O\left(251^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 184 + 251 + 33\cdot 251^{2} + 239\cdot 251^{3} + 100\cdot 251^{4} +O\left(251^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 188 a + 148 + \left(90 a + 236\right)\cdot 251 + \left(153 a + 134\right)\cdot 251^{2} + \left(232 a + 194\right)\cdot 251^{3} + \left(74 a + 193\right)\cdot 251^{4} +O\left(251^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$14$
$21$$2$$(1,2)$$6$
$105$$2$$(1,2)(3,4)(5,6)$$2$
$105$$2$$(1,2)(3,4)$$2$
$70$$3$$(1,2,3)$$2$
$280$$3$$(1,2,3)(4,5,6)$$-1$
$210$$4$$(1,2,3,4)$$0$
$630$$4$$(1,2,3,4)(5,6)$$0$
$504$$5$$(1,2,3,4,5)$$-1$
$210$$6$$(1,2,3)(4,5)(6,7)$$2$
$420$$6$$(1,2,3)(4,5)$$0$
$840$$6$$(1,2,3,4,5,6)$$-1$
$720$$7$$(1,2,3,4,5,6,7)$$0$
$504$$10$$(1,2,3,4,5)(6,7)$$1$
$420$$12$$(1,2,3,4)(5,6,7)$$0$
The blue line marks the conjugacy class containing complex conjugation.