Properties

Label 14.844...873.30t565.a.a
Dimension $14$
Group $S_7$
Conductor $8.445\times 10^{67}$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $14$
Group: $S_7$
Conductor: \(844\!\cdots\!873\)\(\medspace = 35269513^{9} \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 7.7.35269513.1
Galois orbit size: $1$
Smallest permutation container: 30T565
Parity: even
Determinant: 1.35269513.2t1.a.a
Projective image: $S_7$
Projective stem field: Galois closure of 7.7.35269513.1

Defining polynomial

$f(x)$$=$ \( x^{7} - 2x^{6} - 5x^{5} + 10x^{4} + 5x^{3} - 10x^{2} - x + 1 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 149 }$ to precision 5.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 149 }$: \( x^{2} + 145x + 2 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 120 a + 78 + \left(116 a + 116\right)\cdot 149 + \left(95 a + 80\right)\cdot 149^{2} + \left(129 a + 45\right)\cdot 149^{3} + 106 a\cdot 149^{4} +O(149^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 142 a + 15 + \left(80 a + 10\right)\cdot 149 + \left(53 a + 132\right)\cdot 149^{2} + \left(54 a + 128\right)\cdot 149^{3} + \left(131 a + 144\right)\cdot 149^{4} +O(149^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 7 a + 136 + \left(68 a + 42\right)\cdot 149 + \left(95 a + 116\right)\cdot 149^{2} + \left(94 a + 143\right)\cdot 149^{3} + \left(17 a + 19\right)\cdot 149^{4} +O(149^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 29 a + 111 + \left(32 a + 16\right)\cdot 149 + \left(53 a + 49\right)\cdot 149^{2} + \left(19 a + 21\right)\cdot 149^{3} + 42 a\cdot 149^{4} +O(149^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 20 a + 21 + \left(25 a + 128\right)\cdot 149 + \left(126 a + 9\right)\cdot 149^{2} + \left(78 a + 127\right)\cdot 149^{3} + \left(31 a + 100\right)\cdot 149^{4} +O(149^{5})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 129 a + 101 + \left(123 a + 59\right)\cdot 149 + \left(22 a + 42\right)\cdot 149^{2} + \left(70 a + 18\right)\cdot 149^{3} + \left(117 a + 148\right)\cdot 149^{4} +O(149^{5})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 136 + 72\cdot 149 + 16\cdot 149^{2} + 111\cdot 149^{3} + 32\cdot 149^{4} +O(149^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character valueComplex conjugation
$1$$1$$()$$14$
$21$$2$$(1,2)$$-4$
$105$$2$$(1,2)(3,4)(5,6)$$0$
$105$$2$$(1,2)(3,4)$$2$
$70$$3$$(1,2,3)$$-1$
$280$$3$$(1,2,3)(4,5,6)$$2$
$210$$4$$(1,2,3,4)$$2$
$630$$4$$(1,2,3,4)(5,6)$$0$
$504$$5$$(1,2,3,4,5)$$-1$
$210$$6$$(1,2,3)(4,5)(6,7)$$-1$
$420$$6$$(1,2,3)(4,5)$$-1$
$840$$6$$(1,2,3,4,5,6)$$0$
$720$$7$$(1,2,3,4,5,6,7)$$0$
$504$$10$$(1,2,3,4,5)(6,7)$$1$
$420$$12$$(1,2,3,4)(5,6,7)$$-1$