Properties

Label 14.32354821e10.42t413.1c1
Dimension 14
Group $S_7$
Conductor $ 32354821^{10}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$14$
Group:$S_7$
Conductor:$1257158438076393518240484225640729104507036532938826883158110728144895166201= 32354821^{10} $
Artin number field: Splitting field of $f= x^{7} - 2 x^{6} - 5 x^{5} + 9 x^{4} + 6 x^{3} - 8 x^{2} - x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 42T413
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 157 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 157 }$: $ x^{2} + 152 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 44 a + 15 + \left(60 a + 110\right)\cdot 157 + \left(101 a + 131\right)\cdot 157^{2} + \left(43 a + 27\right)\cdot 157^{3} + \left(77 a + 58\right)\cdot 157^{4} +O\left(157^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 91 a + 98 + \left(145 a + 58\right)\cdot 157 + \left(137 a + 147\right)\cdot 157^{2} + \left(83 a + 83\right)\cdot 157^{3} + \left(36 a + 129\right)\cdot 157^{4} +O\left(157^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 66 a + 82 + \left(11 a + 67\right)\cdot 157 + \left(19 a + 63\right)\cdot 157^{2} + \left(73 a + 51\right)\cdot 157^{3} + \left(120 a + 71\right)\cdot 157^{4} +O\left(157^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 113 a + 78 + \left(96 a + 53\right)\cdot 157 + \left(55 a + 107\right)\cdot 157^{2} + \left(113 a + 144\right)\cdot 157^{3} + \left(79 a + 86\right)\cdot 157^{4} +O\left(157^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 113 + 29\cdot 157 + 54\cdot 157^{2} + 28\cdot 157^{3} + 32\cdot 157^{4} +O\left(157^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 108 a + 9 + \left(82 a + 80\right)\cdot 157 + \left(135 a + 78\right)\cdot 157^{2} + \left(55 a + 152\right)\cdot 157^{3} + \left(58 a + 6\right)\cdot 157^{4} +O\left(157^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 49 a + 78 + \left(74 a + 71\right)\cdot 157 + \left(21 a + 45\right)\cdot 157^{2} + \left(101 a + 139\right)\cdot 157^{3} + \left(98 a + 85\right)\cdot 157^{4} +O\left(157^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$14$
$21$$2$$(1,2)$$-6$
$105$$2$$(1,2)(3,4)(5,6)$$-2$
$105$$2$$(1,2)(3,4)$$2$
$70$$3$$(1,2,3)$$2$
$280$$3$$(1,2,3)(4,5,6)$$-1$
$210$$4$$(1,2,3,4)$$0$
$630$$4$$(1,2,3,4)(5,6)$$0$
$504$$5$$(1,2,3,4,5)$$-1$
$210$$6$$(1,2,3)(4,5)(6,7)$$2$
$420$$6$$(1,2,3)(4,5)$$0$
$840$$6$$(1,2,3,4,5,6)$$1$
$720$$7$$(1,2,3,4,5,6,7)$$0$
$504$$10$$(1,2,3,4,5)(6,7)$$-1$
$420$$12$$(1,2,3,4)(5,6,7)$$0$
The blue line marks the conjugacy class containing complex conjugation.