Properties

Label 14.31e9_25447e9.30t565.1c1
Dimension 14
Group $S_7$
Conductor $ 31^{9} \cdot 25447^{9}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$14$
Group:$S_7$
Conductor:$118299947738293266714360310592761176449318737142003257= 31^{9} \cdot 25447^{9} $
Artin number field: Splitting field of $f= x^{7} - x^{6} - x^{5} + 3 x^{4} - 2 x^{3} + 2 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 30T565
Parity: Even
Determinant: 1.31_25447.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 67 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 67 }$: $ x^{2} + 63 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 2 + 41\cdot 67 + 23\cdot 67^{2} + 62\cdot 67^{3} + 65\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 3 a + 50 + \left(36 a + 8\right)\cdot 67 + \left(4 a + 44\right)\cdot 67^{2} + \left(3 a + 4\right)\cdot 67^{3} + \left(19 a + 36\right)\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 26 a + 38 + \left(58 a + 44\right)\cdot 67 + \left(2 a + 7\right)\cdot 67^{2} + \left(47 a + 52\right)\cdot 67^{3} + \left(48 a + 10\right)\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 64 a + 62 + \left(30 a + 15\right)\cdot 67 + \left(62 a + 26\right)\cdot 67^{2} + \left(63 a + 12\right)\cdot 67^{3} + \left(47 a + 42\right)\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 40 a + 8 + \left(49 a + 41\right)\cdot 67 + \left(16 a + 60\right)\cdot 67^{2} + \left(40 a + 44\right)\cdot 67^{3} + \left(38 a + 20\right)\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 41 a + 8 + \left(8 a + 51\right)\cdot 67 + \left(64 a + 27\right)\cdot 67^{2} + \left(19 a + 36\right)\cdot 67^{3} + \left(18 a + 24\right)\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 27 a + 34 + \left(17 a + 65\right)\cdot 67 + \left(50 a + 10\right)\cdot 67^{2} + \left(26 a + 55\right)\cdot 67^{3} + 28 a\cdot 67^{4} +O\left(67^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$14$
$21$$2$$(1,2)$$-4$
$105$$2$$(1,2)(3,4)(5,6)$$0$
$105$$2$$(1,2)(3,4)$$2$
$70$$3$$(1,2,3)$$-1$
$280$$3$$(1,2,3)(4,5,6)$$2$
$210$$4$$(1,2,3,4)$$2$
$630$$4$$(1,2,3,4)(5,6)$$0$
$504$$5$$(1,2,3,4,5)$$-1$
$210$$6$$(1,2,3)(4,5)(6,7)$$-1$
$420$$6$$(1,2,3)(4,5)$$-1$
$840$$6$$(1,2,3,4,5,6)$$0$
$720$$7$$(1,2,3,4,5,6,7)$$0$
$504$$10$$(1,2,3,4,5)(6,7)$$1$
$420$$12$$(1,2,3,4)(5,6,7)$$-1$
The blue line marks the conjugacy class containing complex conjugation.