Properties

Label 14.313e9_176713e9.30t565.1
Dimension 14
Group $S_7$
Conductor $ 313^{9} \cdot 176713^{9}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$14$
Group:$S_7$
Conductor:$4845242704544915511388281947698212099385392045807301844534386911352129= 313^{9} \cdot 176713^{9} $
Artin number field: Splitting field of $f= x^{7} - x^{6} - 7 x^{5} + 8 x^{4} + 10 x^{3} - 11 x^{2} - 2 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 30T565
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 311 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 311 }$: $ x^{2} + 310 x + 17 $
Roots:
$r_{ 1 }$ $=$ $ 49 a + 59 + \left(122 a + 217\right)\cdot 311 + \left(123 a + 254\right)\cdot 311^{2} + \left(310 a + 253\right)\cdot 311^{3} + \left(29 a + 44\right)\cdot 311^{4} +O\left(311^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 262 a + 108 + \left(188 a + 290\right)\cdot 311 + \left(187 a + 255\right)\cdot 311^{2} + 129\cdot 311^{3} + \left(281 a + 75\right)\cdot 311^{4} +O\left(311^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 218 a + 271 + \left(261 a + 66\right)\cdot 311 + \left(163 a + 90\right)\cdot 311^{2} + \left(74 a + 82\right)\cdot 311^{3} + \left(17 a + 273\right)\cdot 311^{4} +O\left(311^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 64 + 34\cdot 311 + 94\cdot 311^{2} + 169\cdot 311^{3} + 85\cdot 311^{4} +O\left(311^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 93 a + 178 + \left(49 a + 110\right)\cdot 311 + \left(147 a + 303\right)\cdot 311^{2} + \left(236 a + 303\right)\cdot 311^{3} + \left(293 a + 215\right)\cdot 311^{4} +O\left(311^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 261 + 263\cdot 311 + 79\cdot 311^{2} + 169\cdot 311^{3} + 9\cdot 311^{4} +O\left(311^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 304 + 260\cdot 311 + 165\cdot 311^{2} + 135\cdot 311^{3} + 228\cdot 311^{4} +O\left(311^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$
$1$ $1$ $()$ $14$
$21$ $2$ $(1,2)$ $-4$
$105$ $2$ $(1,2)(3,4)(5,6)$ $0$
$105$ $2$ $(1,2)(3,4)$ $2$
$70$ $3$ $(1,2,3)$ $-1$
$280$ $3$ $(1,2,3)(4,5,6)$ $2$
$210$ $4$ $(1,2,3,4)$ $2$
$630$ $4$ $(1,2,3,4)(5,6)$ $0$
$504$ $5$ $(1,2,3,4,5)$ $-1$
$210$ $6$ $(1,2,3)(4,5)(6,7)$ $-1$
$420$ $6$ $(1,2,3)(4,5)$ $-1$
$840$ $6$ $(1,2,3,4,5,6)$ $0$
$720$ $7$ $(1,2,3,4,5,6,7)$ $0$
$504$ $10$ $(1,2,3,4,5)(6,7)$ $1$
$420$ $12$ $(1,2,3,4)(5,6,7)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.