Properties

Label 14.2e8_29e10_47e10_14563e10.42t413.1c1
Dimension 14
Group $S_7$
Conductor $ 2^{8} \cdot 29^{10} \cdot 47^{10} \cdot 14563^{10}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$14$
Group:$S_7$
Conductor:$2430563763093250107839406870384864531849873255270339080298614910034356941056= 2^{8} \cdot 29^{10} \cdot 47^{10} \cdot 14563^{10} $
Artin number field: Splitting field of $f= x^{7} - 3 x^{6} - 3 x^{5} + 13 x^{4} - x^{3} - 12 x^{2} + 2 x + 2 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 42T413
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 197 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 197 }$: $ x^{2} + 192 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 23 a + 18 + \left(13 a + 185\right)\cdot 197 + \left(157 a + 84\right)\cdot 197^{2} + \left(72 a + 146\right)\cdot 197^{3} + \left(125 a + 111\right)\cdot 197^{4} +O\left(197^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 193 a + 17 + \left(152 a + 10\right)\cdot 197 + \left(114 a + 144\right)\cdot 197^{2} + \left(68 a + 131\right)\cdot 197^{3} + \left(182 a + 44\right)\cdot 197^{4} +O\left(197^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 153 + 2\cdot 197 + 71\cdot 197^{2} + 5\cdot 197^{3} + 137\cdot 197^{4} +O\left(197^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 76 + 180\cdot 197 + 132\cdot 197^{2} + 177\cdot 197^{3} + 197^{4} +O\left(197^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 174 a + 133 + \left(183 a + 30\right)\cdot 197 + \left(39 a + 69\right)\cdot 197^{2} + \left(124 a + 156\right)\cdot 197^{3} + \left(71 a + 74\right)\cdot 197^{4} +O\left(197^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 3 + 191\cdot 197 + 114\cdot 197^{2} + 7\cdot 197^{3} + 121\cdot 197^{4} +O\left(197^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 4 a + 194 + \left(44 a + 187\right)\cdot 197 + \left(82 a + 170\right)\cdot 197^{2} + \left(128 a + 162\right)\cdot 197^{3} + \left(14 a + 99\right)\cdot 197^{4} +O\left(197^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$14$
$21$$2$$(1,2)$$-6$
$105$$2$$(1,2)(3,4)(5,6)$$-2$
$105$$2$$(1,2)(3,4)$$2$
$70$$3$$(1,2,3)$$2$
$280$$3$$(1,2,3)(4,5,6)$$-1$
$210$$4$$(1,2,3,4)$$0$
$630$$4$$(1,2,3,4)(5,6)$$0$
$504$$5$$(1,2,3,4,5)$$-1$
$210$$6$$(1,2,3)(4,5)(6,7)$$2$
$420$$6$$(1,2,3)(4,5)$$0$
$840$$6$$(1,2,3,4,5,6)$$1$
$720$$7$$(1,2,3,4,5,6,7)$$0$
$504$$10$$(1,2,3,4,5)(6,7)$$-1$
$420$$12$$(1,2,3,4)(5,6,7)$$0$
The blue line marks the conjugacy class containing complex conjugation.