Properties

Label 14.2e26_101e10_26759e10.42t413.1
Dimension 14
Group $S_7$
Conductor $ 2^{26} \cdot 101^{10} \cdot 26759^{10}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$14$
Group:$S_7$
Conductor:$1395379764388507871417753558338020997307745346176228095992220977110974464= 2^{26} \cdot 101^{10} \cdot 26759^{10} $
Artin number field: Splitting field of $f= x^{7} - x^{6} - 7 x^{5} + 4 x^{4} + 15 x^{3} - 2 x^{2} - 8 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 42T413
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 59 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 59 }$: $ x^{2} + 58 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 50 + 40\cdot 59 + 32\cdot 59^{2} + 49\cdot 59^{3} + 32\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 27 a + 8 + \left(17 a + 12\right)\cdot 59 + \left(14 a + 1\right)\cdot 59^{2} + \left(2 a + 5\right)\cdot 59^{3} + \left(50 a + 35\right)\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 46 + 12\cdot 59 + 19\cdot 59^{2} + 55\cdot 59^{3} + 7\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 32 a + 35 + \left(41 a + 2\right)\cdot 59 + \left(44 a + 57\right)\cdot 59^{2} + \left(56 a + 51\right)\cdot 59^{3} + \left(8 a + 23\right)\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 47 + 38\cdot 59 + 42\cdot 59^{2} + 8\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 29 a + 11 + \left(11 a + 14\right)\cdot 59 + \left(52 a + 21\right)\cdot 59^{2} + \left(38 a + 43\right)\cdot 59^{3} + \left(18 a + 44\right)\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 30 a + 40 + \left(47 a + 55\right)\cdot 59 + \left(6 a + 2\right)\cdot 59^{2} + \left(20 a + 30\right)\cdot 59^{3} + \left(40 a + 24\right)\cdot 59^{4} +O\left(59^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$
$1$ $1$ $()$ $14$
$21$ $2$ $(1,2)$ $-6$
$105$ $2$ $(1,2)(3,4)(5,6)$ $-2$
$105$ $2$ $(1,2)(3,4)$ $2$
$70$ $3$ $(1,2,3)$ $2$
$280$ $3$ $(1,2,3)(4,5,6)$ $-1$
$210$ $4$ $(1,2,3,4)$ $0$
$630$ $4$ $(1,2,3,4)(5,6)$ $0$
$504$ $5$ $(1,2,3,4,5)$ $-1$
$210$ $6$ $(1,2,3)(4,5)(6,7)$ $2$
$420$ $6$ $(1,2,3)(4,5)$ $0$
$840$ $6$ $(1,2,3,4,5,6)$ $1$
$720$ $7$ $(1,2,3,4,5,6,7)$ $0$
$504$ $10$ $(1,2,3,4,5)(6,7)$ $-1$
$420$ $12$ $(1,2,3,4)(5,6,7)$ $0$
The blue line marks the conjugacy class containing complex conjugation.