Properties

Label 14.2e12_728809e9.30t565.1
Dimension 14
Group $S_7$
Conductor $ 2^{12} \cdot 728809^{9}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$14$
Group:$S_7$
Conductor:$237620273566859255508878069094327807789816566385720070144= 2^{12} \cdot 728809^{9} $
Artin number field: Splitting field of $f= x^{7} - x^{6} - 7 x^{5} + 3 x^{4} + 13 x^{3} - x^{2} - 5 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 30T565
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 191 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 191 }$: $ x^{2} + 190 x + 19 $
Roots:
$r_{ 1 }$ $=$ $ 54 + 53\cdot 191 + 22\cdot 191^{2} + 92\cdot 191^{3} + 174\cdot 191^{4} +O\left(191^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 68 a + 138 + \left(180 a + 122\right)\cdot 191 + \left(56 a + 47\right)\cdot 191^{2} + \left(118 a + 154\right)\cdot 191^{3} + \left(60 a + 100\right)\cdot 191^{4} +O\left(191^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 123 a + 15 + \left(10 a + 44\right)\cdot 191 + \left(134 a + 115\right)\cdot 191^{2} + \left(72 a + 24\right)\cdot 191^{3} + \left(130 a + 43\right)\cdot 191^{4} +O\left(191^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 98 a + 15 + \left(20 a + 35\right)\cdot 191 + \left(153 a + 143\right)\cdot 191^{2} + \left(154 a + 63\right)\cdot 191^{3} + \left(49 a + 161\right)\cdot 191^{4} +O\left(191^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 117 + 116\cdot 191 + 101\cdot 191^{2} + 149\cdot 191^{3} + 149\cdot 191^{4} +O\left(191^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 122 + 52\cdot 191 + 58\cdot 191^{2} + 23\cdot 191^{3} + 78\cdot 191^{4} +O\left(191^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 93 a + 113 + \left(170 a + 148\right)\cdot 191 + \left(37 a + 84\right)\cdot 191^{2} + \left(36 a + 65\right)\cdot 191^{3} + \left(141 a + 56\right)\cdot 191^{4} +O\left(191^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$
$1$ $1$ $()$ $14$
$21$ $2$ $(1,2)$ $-4$
$105$ $2$ $(1,2)(3,4)(5,6)$ $0$
$105$ $2$ $(1,2)(3,4)$ $2$
$70$ $3$ $(1,2,3)$ $-1$
$280$ $3$ $(1,2,3)(4,5,6)$ $2$
$210$ $4$ $(1,2,3,4)$ $2$
$630$ $4$ $(1,2,3,4)(5,6)$ $0$
$504$ $5$ $(1,2,3,4,5)$ $-1$
$210$ $6$ $(1,2,3)(4,5)(6,7)$ $-1$
$420$ $6$ $(1,2,3)(4,5)$ $-1$
$840$ $6$ $(1,2,3,4,5,6)$ $0$
$720$ $7$ $(1,2,3,4,5,6,7)$ $0$
$504$ $10$ $(1,2,3,4,5)(6,7)$ $1$
$420$ $12$ $(1,2,3,4)(5,6,7)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.