Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 193 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 193 }$: $ x^{2} + 192 x + 5 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 127 a + \left(88 a + 53\right)\cdot 193 + \left(192 a + 177\right)\cdot 193^{2} + \left(77 a + 118\right)\cdot 193^{3} + \left(45 a + 18\right)\cdot 193^{4} +O\left(193^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 66 a + 127 + \left(104 a + 14\right)\cdot 193 + 88\cdot 193^{2} + \left(115 a + 4\right)\cdot 193^{3} + \left(147 a + 179\right)\cdot 193^{4} +O\left(193^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 27 + 156\cdot 193 + 2\cdot 193^{2} + 175\cdot 193^{3} + 163\cdot 193^{4} +O\left(193^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 138 + 63\cdot 193 + 58\cdot 193^{2} + 86\cdot 193^{3} + 170\cdot 193^{4} +O\left(193^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 54 + 85\cdot 193 + 51\cdot 193^{2} + 120\cdot 193^{3} + 34\cdot 193^{4} +O\left(193^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 19 + 131\cdot 193 + 34\cdot 193^{2} + 134\cdot 193^{3} + 57\cdot 193^{4} +O\left(193^{ 5 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 23 + 75\cdot 193 + 166\cdot 193^{2} + 132\cdot 193^{3} + 147\cdot 193^{4} +O\left(193^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 7 }$
| Cycle notation |
| $(1,2,3,4,5,6,7)$ |
| $(1,2)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 7 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$14$ |
| $21$ |
$2$ |
$(1,2)$ |
$-4$ |
| $105$ |
$2$ |
$(1,2)(3,4)(5,6)$ |
$0$ |
| $105$ |
$2$ |
$(1,2)(3,4)$ |
$2$ |
| $70$ |
$3$ |
$(1,2,3)$ |
$-1$ |
| $280$ |
$3$ |
$(1,2,3)(4,5,6)$ |
$2$ |
| $210$ |
$4$ |
$(1,2,3,4)$ |
$2$ |
| $630$ |
$4$ |
$(1,2,3,4)(5,6)$ |
$0$ |
| $504$ |
$5$ |
$(1,2,3,4,5)$ |
$-1$ |
| $210$ |
$6$ |
$(1,2,3)(4,5)(6,7)$ |
$-1$ |
| $420$ |
$6$ |
$(1,2,3)(4,5)$ |
$-1$ |
| $840$ |
$6$ |
$(1,2,3,4,5,6)$ |
$0$ |
| $720$ |
$7$ |
$(1,2,3,4,5,6,7)$ |
$0$ |
| $504$ |
$10$ |
$(1,2,3,4,5)(6,7)$ |
$1$ |
| $420$ |
$12$ |
$(1,2,3,4)(5,6,7)$ |
$-1$ |
The blue line marks the conjugacy class containing complex conjugation.