Properties

Label 14.283e10_14173e10.42t413.1
Dimension 14
Group $S_7$
Conductor $ 283^{10} \cdot 14173^{10}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$14$
Group:$S_7$
Conductor:$1077661149479244873529904155255800191190224976895435642521379442401= 283^{10} \cdot 14173^{10} $
Artin number field: Splitting field of $f= x^{7} - 2 x^{6} - 2 x^{5} + 5 x^{4} - 3 x^{3} - 3 x^{2} + 4 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 42T413
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 193 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 193 }$: $ x^{2} + 192 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 127 a + \left(88 a + 53\right)\cdot 193 + \left(192 a + 177\right)\cdot 193^{2} + \left(77 a + 118\right)\cdot 193^{3} + \left(45 a + 18\right)\cdot 193^{4} +O\left(193^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 66 a + 127 + \left(104 a + 14\right)\cdot 193 + 88\cdot 193^{2} + \left(115 a + 4\right)\cdot 193^{3} + \left(147 a + 179\right)\cdot 193^{4} +O\left(193^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 27 + 156\cdot 193 + 2\cdot 193^{2} + 175\cdot 193^{3} + 163\cdot 193^{4} +O\left(193^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 138 + 63\cdot 193 + 58\cdot 193^{2} + 86\cdot 193^{3} + 170\cdot 193^{4} +O\left(193^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 54 + 85\cdot 193 + 51\cdot 193^{2} + 120\cdot 193^{3} + 34\cdot 193^{4} +O\left(193^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 19 + 131\cdot 193 + 34\cdot 193^{2} + 134\cdot 193^{3} + 57\cdot 193^{4} +O\left(193^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 23 + 75\cdot 193 + 166\cdot 193^{2} + 132\cdot 193^{3} + 147\cdot 193^{4} +O\left(193^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$
$1$ $1$ $()$ $14$
$21$ $2$ $(1,2)$ $-6$
$105$ $2$ $(1,2)(3,4)(5,6)$ $-2$
$105$ $2$ $(1,2)(3,4)$ $2$
$70$ $3$ $(1,2,3)$ $2$
$280$ $3$ $(1,2,3)(4,5,6)$ $-1$
$210$ $4$ $(1,2,3,4)$ $0$
$630$ $4$ $(1,2,3,4)(5,6)$ $0$
$504$ $5$ $(1,2,3,4,5)$ $-1$
$210$ $6$ $(1,2,3)(4,5)(6,7)$ $2$
$420$ $6$ $(1,2,3)(4,5)$ $0$
$840$ $6$ $(1,2,3,4,5,6)$ $1$
$720$ $7$ $(1,2,3,4,5,6,7)$ $0$
$504$ $10$ $(1,2,3,4,5)(6,7)$ $-1$
$420$ $12$ $(1,2,3,4)(5,6,7)$ $0$
The blue line marks the conjugacy class containing complex conjugation.