Properties

Label 14.23e10_39551e10.42t413.1
Dimension 14
Group $S_7$
Conductor $ 23^{10} \cdot 39551^{10}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$14$
Group:$S_7$
Conductor:$388019048268235170508284857466816504183231799380714003405649= 23^{10} \cdot 39551^{10} $
Artin number field: Splitting field of $f= x^{7} - 2 x^{6} + 3 x^{5} - 4 x^{4} + 2 x^{3} - x^{2} - x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 42T413
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 79 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 79 }$: $ x^{2} + 78 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 4 + 24\cdot 79 + 59\cdot 79^{2} + 14\cdot 79^{3} + 75\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 25 a + 13 + \left(41 a + 63\right)\cdot 79 + \left(38 a + 63\right)\cdot 79^{2} + \left(62 a + 22\right)\cdot 79^{3} + \left(21 a + 76\right)\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 37 + 7\cdot 79 + 29\cdot 79^{2} + 22\cdot 79^{3} + 78\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 54 a + 38 + 37 a\cdot 79 + \left(40 a + 61\right)\cdot 79^{2} + \left(16 a + 46\right)\cdot 79^{3} + \left(57 a + 35\right)\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 39 + 18\cdot 79^{2} + 75\cdot 79^{3} + 30\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 51 a + 68 + \left(47 a + 32\right)\cdot 79 + \left(66 a + 72\right)\cdot 79^{2} + 40 a\cdot 79^{3} + \left(74 a + 72\right)\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 28 a + 40 + \left(31 a + 29\right)\cdot 79 + \left(12 a + 12\right)\cdot 79^{2} + \left(38 a + 54\right)\cdot 79^{3} + \left(4 a + 26\right)\cdot 79^{4} +O\left(79^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$
$1$ $1$ $()$ $14$
$21$ $2$ $(1,2)$ $-6$
$105$ $2$ $(1,2)(3,4)(5,6)$ $-2$
$105$ $2$ $(1,2)(3,4)$ $2$
$70$ $3$ $(1,2,3)$ $2$
$280$ $3$ $(1,2,3)(4,5,6)$ $-1$
$210$ $4$ $(1,2,3,4)$ $0$
$630$ $4$ $(1,2,3,4)(5,6)$ $0$
$504$ $5$ $(1,2,3,4,5)$ $-1$
$210$ $6$ $(1,2,3)(4,5)(6,7)$ $2$
$420$ $6$ $(1,2,3)(4,5)$ $0$
$840$ $6$ $(1,2,3,4,5,6)$ $1$
$720$ $7$ $(1,2,3,4,5,6,7)$ $0$
$504$ $10$ $(1,2,3,4,5)(6,7)$ $-1$
$420$ $12$ $(1,2,3,4)(5,6,7)$ $0$
The blue line marks the conjugacy class containing complex conjugation.