Properties

Label 14.223e4_15497e4.21t38.1
Dimension 14
Group $S_7$
Conductor $ 223^{4} \cdot 15497^{4}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$14$
Group:$S_7$
Conductor:$142629705126670195584114721= 223^{4} \cdot 15497^{4} $
Artin number field: Splitting field of $f= x^{7} - x^{6} - 4 x^{5} + 4 x^{4} + 2 x^{3} - 2 x^{2} + 2 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 21T38
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{2} + 24 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 22 a + 23 + \left(9 a + 21\right)\cdot 29 + \left(16 a + 8\right)\cdot 29^{2} + \left(20 a + 9\right)\cdot 29^{3} + \left(25 a + 16\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 2 a + 1 + \left(15 a + 10\right)\cdot 29 + \left(22 a + 13\right)\cdot 29^{2} + \left(7 a + 23\right)\cdot 29^{3} + \left(8 a + 7\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 27 a + 11 + \left(13 a + 25\right)\cdot 29 + \left(6 a + 23\right)\cdot 29^{2} + \left(21 a + 10\right)\cdot 29^{3} + \left(20 a + 12\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 27 + 23\cdot 29 + 28\cdot 29^{2} + 15\cdot 29^{3} + 12\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 7 a + 17 + \left(19 a + 19\right)\cdot 29 + \left(12 a + 22\right)\cdot 29^{2} + \left(8 a + 8\right)\cdot 29^{3} + \left(3 a + 8\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 27 a + 24 + \left(7 a + 15\right)\cdot 29 + \left(17 a + 13\right)\cdot 29^{2} + \left(26 a + 9\right)\cdot 29^{3} + \left(14 a + 5\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 2 a + 14 + \left(21 a + 28\right)\cdot 29 + \left(11 a + 4\right)\cdot 29^{2} + \left(2 a + 9\right)\cdot 29^{3} + \left(14 a + 24\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$
$1$ $1$ $()$ $14$
$21$ $2$ $(1,2)$ $6$
$105$ $2$ $(1,2)(3,4)(5,6)$ $2$
$105$ $2$ $(1,2)(3,4)$ $2$
$70$ $3$ $(1,2,3)$ $2$
$280$ $3$ $(1,2,3)(4,5,6)$ $-1$
$210$ $4$ $(1,2,3,4)$ $0$
$630$ $4$ $(1,2,3,4)(5,6)$ $0$
$504$ $5$ $(1,2,3,4,5)$ $-1$
$210$ $6$ $(1,2,3)(4,5)(6,7)$ $2$
$420$ $6$ $(1,2,3)(4,5)$ $0$
$840$ $6$ $(1,2,3,4,5,6)$ $-1$
$720$ $7$ $(1,2,3,4,5,6,7)$ $0$
$504$ $10$ $(1,2,3,4,5)(6,7)$ $1$
$420$ $12$ $(1,2,3,4)(5,6,7)$ $0$
The blue line marks the conjugacy class containing complex conjugation.