Properties

Label 14.197e5_211e5_1031e5.30t565.1c1
Dimension 14
Group $S_7$
Conductor $ 197^{5} \cdot 211^{5} \cdot 1031^{5}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$14$
Group:$S_7$
Conductor:$144556203482927678219267408891432161657= 197^{5} \cdot 211^{5} \cdot 1031^{5} $
Artin number field: Splitting field of $f= x^{7} - x^{6} - 7 x^{5} + 3 x^{4} + 14 x^{3} + 2 x^{2} - 4 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 30T565
Parity: Even
Determinant: 1.197_211_1031.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 101 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 101 }$: $ x^{2} + 97 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 87 a + 83 + \left(86 a + 66\right)\cdot 101 + \left(3 a + 57\right)\cdot 101^{2} + \left(24 a + 3\right)\cdot 101^{3} + \left(69 a + 11\right)\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 27 a + 28 + \left(17 a + 78\right)\cdot 101 + \left(34 a + 85\right)\cdot 101^{2} + \left(28 a + 96\right)\cdot 101^{3} + \left(86 a + 32\right)\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 14 a + 27 + \left(14 a + 24\right)\cdot 101 + \left(97 a + 87\right)\cdot 101^{2} + \left(76 a + 95\right)\cdot 101^{3} + \left(31 a + 61\right)\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 74 a + 35 + \left(83 a + 19\right)\cdot 101 + \left(66 a + 3\right)\cdot 101^{2} + \left(72 a + 75\right)\cdot 101^{3} + \left(14 a + 46\right)\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 9 + 89\cdot 101 + 55\cdot 101^{2} + 51\cdot 101^{3} + 73\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 71 + 70\cdot 101 + 80\cdot 101^{2} + 67\cdot 101^{3} + 52\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 51 + 55\cdot 101 + 33\cdot 101^{2} + 13\cdot 101^{3} + 24\cdot 101^{4} +O\left(101^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$14$
$21$$2$$(1,2)$$4$
$105$$2$$(1,2)(3,4)(5,6)$$0$
$105$$2$$(1,2)(3,4)$$2$
$70$$3$$(1,2,3)$$-1$
$280$$3$$(1,2,3)(4,5,6)$$2$
$210$$4$$(1,2,3,4)$$-2$
$630$$4$$(1,2,3,4)(5,6)$$0$
$504$$5$$(1,2,3,4,5)$$-1$
$210$$6$$(1,2,3)(4,5)(6,7)$$-1$
$420$$6$$(1,2,3)(4,5)$$1$
$840$$6$$(1,2,3,4,5,6)$$0$
$720$$7$$(1,2,3,4,5,6,7)$$0$
$504$$10$$(1,2,3,4,5)(6,7)$$-1$
$420$$12$$(1,2,3,4)(5,6,7)$$1$
The blue line marks the conjugacy class containing complex conjugation.