Properties

Label 14.193e4_32983e4.21t38.1
Dimension 14
Group $S_7$
Conductor $ 193^{4} \cdot 32983^{4}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$14$
Group:$S_7$
Conductor:$1642063150136043976254815521= 193^{4} \cdot 32983^{4} $
Artin number field: Splitting field of $f= x^{7} - x^{6} - 2 x^{5} + 5 x^{4} - 5 x^{2} + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 21T38
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 107 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 107 }$: $ x^{2} + 103 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 42 + 70\cdot 107 + 22\cdot 107^{2} + 63\cdot 107^{3} + 12\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 27 a + 41 + \left(67 a + 84\right)\cdot 107 + \left(25 a + 55\right)\cdot 107^{2} + \left(76 a + 50\right)\cdot 107^{3} + \left(56 a + 97\right)\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 9 + 60\cdot 107 + 63\cdot 107^{2} + 76\cdot 107^{3} + 74\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 80 a + 42 + \left(39 a + 5\right)\cdot 107 + \left(81 a + 91\right)\cdot 107^{2} + \left(30 a + 8\right)\cdot 107^{3} + \left(50 a + 34\right)\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 76 + 16\cdot 107 + 78\cdot 107^{2} + 54\cdot 107^{3} + 57\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 45 + 22\cdot 107 + 94\cdot 107^{2} + 17\cdot 107^{3} + 62\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 67 + 61\cdot 107 + 22\cdot 107^{2} + 49\cdot 107^{3} + 89\cdot 107^{4} +O\left(107^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$
$1$ $1$ $()$ $14$
$21$ $2$ $(1,2)$ $6$
$105$ $2$ $(1,2)(3,4)(5,6)$ $2$
$105$ $2$ $(1,2)(3,4)$ $2$
$70$ $3$ $(1,2,3)$ $2$
$280$ $3$ $(1,2,3)(4,5,6)$ $-1$
$210$ $4$ $(1,2,3,4)$ $0$
$630$ $4$ $(1,2,3,4)(5,6)$ $0$
$504$ $5$ $(1,2,3,4,5)$ $-1$
$210$ $6$ $(1,2,3)(4,5)(6,7)$ $2$
$420$ $6$ $(1,2,3)(4,5)$ $0$
$840$ $6$ $(1,2,3,4,5,6)$ $-1$
$720$ $7$ $(1,2,3,4,5,6,7)$ $0$
$504$ $10$ $(1,2,3,4,5)(6,7)$ $1$
$420$ $12$ $(1,2,3,4)(5,6,7)$ $0$
The blue line marks the conjugacy class containing complex conjugation.