Properties

Label 14.184607e5.30t565.1
Dimension 14
Group $S_7$
Conductor $ 184607^{5}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$14$
Group:$S_7$
Conductor:$214407920026380373514939807= 184607^{5} $
Artin number field: Splitting field of $f= x^{7} - x^{6} - x^{5} + x^{4} - x^{2} + x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 30T565
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 103 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 103 }$: $ x^{2} + 102 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 39 + 12\cdot 103 + 56\cdot 103^{2} + 59\cdot 103^{3} + 33\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 86 + 6\cdot 103 + 91\cdot 103^{2} + 65\cdot 103^{3} + 35\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 80 a + 78 + \left(100 a + 73\right)\cdot 103 + \left(57 a + 89\right)\cdot 103^{2} + \left(11 a + 79\right)\cdot 103^{3} + \left(19 a + 31\right)\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 4 a + 14 + \left(22 a + 94\right)\cdot 103 + \left(53 a + 72\right)\cdot 103^{2} + \left(57 a + 83\right)\cdot 103^{3} + \left(97 a + 9\right)\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 99 a + 18 + \left(80 a + 9\right)\cdot 103 + \left(49 a + 1\right)\cdot 103^{2} + \left(45 a + 88\right)\cdot 103^{3} + \left(5 a + 49\right)\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 23 a + 55 + \left(2 a + 94\right)\cdot 103 + \left(45 a + 46\right)\cdot 103^{2} + \left(91 a + 33\right)\cdot 103^{3} + \left(83 a + 39\right)\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 20 + 18\cdot 103 + 54\cdot 103^{2} + 103^{3} + 6\cdot 103^{4} +O\left(103^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$
$1$ $1$ $()$ $14$
$21$ $2$ $(1,2)$ $4$
$105$ $2$ $(1,2)(3,4)(5,6)$ $0$
$105$ $2$ $(1,2)(3,4)$ $2$
$70$ $3$ $(1,2,3)$ $-1$
$280$ $3$ $(1,2,3)(4,5,6)$ $2$
$210$ $4$ $(1,2,3,4)$ $-2$
$630$ $4$ $(1,2,3,4)(5,6)$ $0$
$504$ $5$ $(1,2,3,4,5)$ $-1$
$210$ $6$ $(1,2,3)(4,5)(6,7)$ $-1$
$420$ $6$ $(1,2,3)(4,5)$ $1$
$840$ $6$ $(1,2,3,4,5,6)$ $0$
$720$ $7$ $(1,2,3,4,5,6,7)$ $0$
$504$ $10$ $(1,2,3,4,5)(6,7)$ $-1$
$420$ $12$ $(1,2,3,4)(5,6,7)$ $1$
The blue line marks the conjugacy class containing complex conjugation.