Properties

Label 14.17e9_23e9_64879e9.30t565.1c1
Dimension 14
Group $S_7$
Conductor $ 17^{9} \cdot 23^{9} \cdot 64879^{9}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$14$
Group:$S_7$
Conductor:$4350389505835356757889362000277275688191163384679306389095270705609= 17^{9} \cdot 23^{9} \cdot 64879^{9} $
Artin number field: Splitting field of $f= x^{7} - x^{6} - 6 x^{5} + 4 x^{4} + 9 x^{3} - 4 x^{2} - 3 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 30T565
Parity: Even
Determinant: 1.17_23_64879.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 353 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 353 }$: $ x^{2} + 348 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 306 + 81\cdot 353 + 153\cdot 353^{2} + 289\cdot 353^{3} + 13\cdot 353^{4} +O\left(353^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 124 a + 13 + \left(4 a + 102\right)\cdot 353 + \left(266 a + 141\right)\cdot 353^{2} + \left(139 a + 292\right)\cdot 353^{3} + \left(10 a + 341\right)\cdot 353^{4} +O\left(353^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 318 a + 298 + \left(37 a + 330\right)\cdot 353 + 301\cdot 353^{2} + \left(189 a + 227\right)\cdot 353^{3} + \left(22 a + 271\right)\cdot 353^{4} +O\left(353^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 86 + 238\cdot 353 + 103\cdot 353^{2} + 195\cdot 353^{3} + 26\cdot 353^{4} +O\left(353^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 229 a + 280 + \left(348 a + 352\right)\cdot 353 + \left(86 a + 54\right)\cdot 353^{2} + \left(213 a + 19\right)\cdot 353^{3} + \left(342 a + 254\right)\cdot 353^{4} +O\left(353^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 307 + 103\cdot 353 + 39\cdot 353^{2} + 274\cdot 353^{3} + 308\cdot 353^{4} +O\left(353^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 35 a + 123 + \left(315 a + 202\right)\cdot 353 + \left(352 a + 264\right)\cdot 353^{2} + \left(163 a + 113\right)\cdot 353^{3} + \left(330 a + 195\right)\cdot 353^{4} +O\left(353^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$14$
$21$$2$$(1,2)$$-4$
$105$$2$$(1,2)(3,4)(5,6)$$0$
$105$$2$$(1,2)(3,4)$$2$
$70$$3$$(1,2,3)$$-1$
$280$$3$$(1,2,3)(4,5,6)$$2$
$210$$4$$(1,2,3,4)$$2$
$630$$4$$(1,2,3,4)(5,6)$$0$
$504$$5$$(1,2,3,4,5)$$-1$
$210$$6$$(1,2,3)(4,5)(6,7)$$-1$
$420$$6$$(1,2,3)(4,5)$$-1$
$840$$6$$(1,2,3,4,5,6)$$0$
$720$$7$$(1,2,3,4,5,6,7)$$0$
$504$$10$$(1,2,3,4,5)(6,7)$$1$
$420$$12$$(1,2,3,4)(5,6,7)$$-1$
The blue line marks the conjugacy class containing complex conjugation.