Properties

Label 14.163e4_6883e4.21t38.1c1
Dimension 14
Group $S_7$
Conductor $ 163^{4} \cdot 6883^{4}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$14$
Group:$S_7$
Conductor:$1584387822661767184843681= 163^{4} \cdot 6883^{4} $
Artin number field: Splitting field of $f= x^{7} - x^{6} - x^{5} - x^{4} + 2 x^{3} - 2 x^{2} + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 21T38
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 41 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 41 }$: $ x^{2} + 38 x + 6 $
Roots:
$r_{ 1 }$ $=$ $ 34 a + 14 + \left(37 a + 33\right)\cdot 41 + \left(23 a + 36\right)\cdot 41^{2} + \left(13 a + 13\right)\cdot 41^{3} + \left(26 a + 5\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 27 + 22\cdot 41 + 31\cdot 41^{2} + 5\cdot 41^{3} + 17\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 7 a + 34 + \left(3 a + 30\right)\cdot 41 + \left(17 a + 29\right)\cdot 41^{2} + \left(27 a + 30\right)\cdot 41^{3} + \left(14 a + 29\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 19 + 41 + 38\cdot 41^{2} + 22\cdot 41^{3} + 20\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 31 a + 3 + \left(6 a + 8\right)\cdot 41 + \left(32 a + 5\right)\cdot 41^{2} + \left(2 a + 17\right)\cdot 41^{3} + \left(14 a + 27\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 10 a + 14 + \left(34 a + 38\right)\cdot 41 + \left(8 a + 12\right)\cdot 41^{2} + \left(38 a + 34\right)\cdot 41^{3} + \left(26 a + 25\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 13 + 29\cdot 41 + 9\cdot 41^{2} + 39\cdot 41^{3} + 37\cdot 41^{4} +O\left(41^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$14$
$21$$2$$(1,2)$$6$
$105$$2$$(1,2)(3,4)(5,6)$$2$
$105$$2$$(1,2)(3,4)$$2$
$70$$3$$(1,2,3)$$2$
$280$$3$$(1,2,3)(4,5,6)$$-1$
$210$$4$$(1,2,3,4)$$0$
$630$$4$$(1,2,3,4)(5,6)$$0$
$504$$5$$(1,2,3,4,5)$$-1$
$210$$6$$(1,2,3)(4,5)(6,7)$$2$
$420$$6$$(1,2,3)(4,5)$$0$
$840$$6$$(1,2,3,4,5,6)$$-1$
$720$$7$$(1,2,3,4,5,6,7)$$0$
$504$$10$$(1,2,3,4,5)(6,7)$$1$
$420$$12$$(1,2,3,4)(5,6,7)$$0$
The blue line marks the conjugacy class containing complex conjugation.