Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 41 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 41 }$: $ x^{2} + 38 x + 6 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 34 a + 14 + \left(37 a + 33\right)\cdot 41 + \left(23 a + 36\right)\cdot 41^{2} + \left(13 a + 13\right)\cdot 41^{3} + \left(26 a + 5\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 27 + 22\cdot 41 + 31\cdot 41^{2} + 5\cdot 41^{3} + 17\cdot 41^{4} +O\left(41^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 7 a + 34 + \left(3 a + 30\right)\cdot 41 + \left(17 a + 29\right)\cdot 41^{2} + \left(27 a + 30\right)\cdot 41^{3} + \left(14 a + 29\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 19 + 41 + 38\cdot 41^{2} + 22\cdot 41^{3} + 20\cdot 41^{4} +O\left(41^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 31 a + 3 + \left(6 a + 8\right)\cdot 41 + \left(32 a + 5\right)\cdot 41^{2} + \left(2 a + 17\right)\cdot 41^{3} + \left(14 a + 27\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 10 a + 14 + \left(34 a + 38\right)\cdot 41 + \left(8 a + 12\right)\cdot 41^{2} + \left(38 a + 34\right)\cdot 41^{3} + \left(26 a + 25\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 13 + 29\cdot 41 + 9\cdot 41^{2} + 39\cdot 41^{3} + 37\cdot 41^{4} +O\left(41^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 7 }$
| Cycle notation |
| $(1,2,3,4,5,6,7)$ |
| $(1,2)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 7 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$14$ |
| $21$ |
$2$ |
$(1,2)$ |
$-6$ |
| $105$ |
$2$ |
$(1,2)(3,4)(5,6)$ |
$-2$ |
| $105$ |
$2$ |
$(1,2)(3,4)$ |
$2$ |
| $70$ |
$3$ |
$(1,2,3)$ |
$2$ |
| $280$ |
$3$ |
$(1,2,3)(4,5,6)$ |
$-1$ |
| $210$ |
$4$ |
$(1,2,3,4)$ |
$0$ |
| $630$ |
$4$ |
$(1,2,3,4)(5,6)$ |
$0$ |
| $504$ |
$5$ |
$(1,2,3,4,5)$ |
$-1$ |
| $210$ |
$6$ |
$(1,2,3)(4,5)(6,7)$ |
$2$ |
| $420$ |
$6$ |
$(1,2,3)(4,5)$ |
$0$ |
| $840$ |
$6$ |
$(1,2,3,4,5,6)$ |
$1$ |
| $720$ |
$7$ |
$(1,2,3,4,5,6,7)$ |
$0$ |
| $504$ |
$10$ |
$(1,2,3,4,5)(6,7)$ |
$-1$ |
| $420$ |
$12$ |
$(1,2,3,4)(5,6,7)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.