Properties

Label 14.149e10_5981e10.42t413.1
Dimension 14
Group $S_7$
Conductor $ 149^{10} \cdot 5981^{10}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$14$
Group:$S_7$
Conductor:$315937158795509085861255915950423053613308631230415023828801= 149^{10} \cdot 5981^{10} $
Artin number field: Splitting field of $f= x^{7} - x^{6} - x^{5} + 2 x^{4} - 3 x^{2} + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 42T413
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 137 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 137 }$: $ x^{2} + 131 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 68 a + 98 + \left(51 a + 90\right)\cdot 137 + \left(a + 72\right)\cdot 137^{2} + \left(107 a + 45\right)\cdot 137^{3} + \left(57 a + 83\right)\cdot 137^{4} +O\left(137^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 107 + 12\cdot 137 + 27\cdot 137^{2} + 70\cdot 137^{3} + 101\cdot 137^{4} +O\left(137^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 120 a + 122 + \left(78 a + 49\right)\cdot 137 + \left(73 a + 112\right)\cdot 137^{2} + \left(115 a + 34\right)\cdot 137^{3} + \left(64 a + 89\right)\cdot 137^{4} +O\left(137^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 49 + 44\cdot 137 + 17\cdot 137^{2} + 110\cdot 137^{3} + 47\cdot 137^{4} +O\left(137^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 69 a + 95 + \left(85 a + 57\right)\cdot 137 + \left(135 a + 29\right)\cdot 137^{2} + \left(29 a + 1\right)\cdot 137^{3} + \left(79 a + 49\right)\cdot 137^{4} +O\left(137^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 58 + 26\cdot 137 + 88\cdot 137^{2} + 42\cdot 137^{3} + 88\cdot 137^{4} +O\left(137^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 17 a + 20 + \left(58 a + 129\right)\cdot 137 + \left(63 a + 63\right)\cdot 137^{2} + \left(21 a + 106\right)\cdot 137^{3} + \left(72 a + 88\right)\cdot 137^{4} +O\left(137^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$
$1$ $1$ $()$ $14$
$21$ $2$ $(1,2)$ $-6$
$105$ $2$ $(1,2)(3,4)(5,6)$ $-2$
$105$ $2$ $(1,2)(3,4)$ $2$
$70$ $3$ $(1,2,3)$ $2$
$280$ $3$ $(1,2,3)(4,5,6)$ $-1$
$210$ $4$ $(1,2,3,4)$ $0$
$630$ $4$ $(1,2,3,4)(5,6)$ $0$
$504$ $5$ $(1,2,3,4,5)$ $-1$
$210$ $6$ $(1,2,3)(4,5)(6,7)$ $2$
$420$ $6$ $(1,2,3)(4,5)$ $0$
$840$ $6$ $(1,2,3,4,5,6)$ $1$
$720$ $7$ $(1,2,3,4,5,6,7)$ $0$
$504$ $10$ $(1,2,3,4,5)(6,7)$ $-1$
$420$ $12$ $(1,2,3,4)(5,6,7)$ $0$
The blue line marks the conjugacy class containing complex conjugation.