Properties

Label 14.1409e9_53657e9.30t565.1c1
Dimension 14
Group $S_7$
Conductor $ 1409^{9} \cdot 53657^{9}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$14$
Group:$S_7$
Conductor:$80693104389094683033047023048573762919504076000807125852630524858899673= 1409^{9} \cdot 53657^{9} $
Artin number field: Splitting field of $f= x^{7} - 2 x^{6} - 6 x^{5} + 10 x^{4} + 9 x^{3} - 13 x^{2} - x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 30T565
Parity: Even
Determinant: 1.1409_53657.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 229 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 229 }$: $ x^{2} + 228 x + 6 $
Roots:
$r_{ 1 }$ $=$ $ 216 + 92\cdot 229 + 185\cdot 229^{2} + 35\cdot 229^{3} + 154\cdot 229^{4} +O\left(229^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 138 a + 90 + \left(112 a + 111\right)\cdot 229 + \left(92 a + 46\right)\cdot 229^{2} + \left(108 a + 137\right)\cdot 229^{3} + \left(61 a + 182\right)\cdot 229^{4} +O\left(229^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 25 a + 116 + \left(184 a + 227\right)\cdot 229 + \left(226 a + 174\right)\cdot 229^{2} + \left(125 a + 32\right)\cdot 229^{3} + \left(3 a + 16\right)\cdot 229^{4} +O\left(229^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 91 a + 228 + \left(116 a + 85\right)\cdot 229 + \left(136 a + 26\right)\cdot 229^{2} + \left(120 a + 153\right)\cdot 229^{3} + \left(167 a + 135\right)\cdot 229^{4} +O\left(229^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 21 a + 53 + \left(200 a + 145\right)\cdot 229 + \left(199 a + 132\right)\cdot 229^{2} + \left(161 a + 102\right)\cdot 229^{3} + \left(86 a + 75\right)\cdot 229^{4} +O\left(229^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 204 a + 141 + \left(44 a + 157\right)\cdot 229 + \left(2 a + 217\right)\cdot 229^{2} + \left(103 a + 160\right)\cdot 229^{3} + \left(225 a + 122\right)\cdot 229^{4} +O\left(229^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 208 a + 74 + \left(28 a + 95\right)\cdot 229 + \left(29 a + 132\right)\cdot 229^{2} + \left(67 a + 64\right)\cdot 229^{3} + 142 a\cdot 229^{4} +O\left(229^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$14$
$21$$2$$(1,2)$$-4$
$105$$2$$(1,2)(3,4)(5,6)$$0$
$105$$2$$(1,2)(3,4)$$2$
$70$$3$$(1,2,3)$$-1$
$280$$3$$(1,2,3)(4,5,6)$$2$
$210$$4$$(1,2,3,4)$$2$
$630$$4$$(1,2,3,4)(5,6)$$0$
$504$$5$$(1,2,3,4,5)$$-1$
$210$$6$$(1,2,3)(4,5)(6,7)$$-1$
$420$$6$$(1,2,3)(4,5)$$-1$
$840$$6$$(1,2,3,4,5,6)$$0$
$720$$7$$(1,2,3,4,5,6,7)$$0$
$504$$10$$(1,2,3,4,5)(6,7)$$1$
$420$$12$$(1,2,3,4)(5,6,7)$$-1$
The blue line marks the conjugacy class containing complex conjugation.