Properties

Label 14.13e6_17e9_127e9.30t565.1
Dimension 14
Group $S_7$
Conductor $ 13^{6} \cdot 17^{9} \cdot 127^{9}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$14$
Group:$S_7$
Conductor:$4919646466976513095606396089443341751= 13^{6} \cdot 17^{9} \cdot 127^{9} $
Artin number field: Splitting field of $f= x^{7} - x^{6} + 2 x^{4} + 2 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 30T565
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 83 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 83 }$: $ x^{2} + 82 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 9 a + 71 + \left(75 a + 82\right)\cdot 83 + \left(23 a + 70\right)\cdot 83^{2} + \left(28 a + 32\right)\cdot 83^{3} + \left(7 a + 37\right)\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 22 + 67\cdot 83 + 82\cdot 83^{2} + 33\cdot 83^{3} + 42\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 82 a + 71 + \left(37 a + 64\right)\cdot 83 + \left(58 a + 26\right)\cdot 83^{2} + \left(67 a + 33\right)\cdot 83^{3} + \left(a + 6\right)\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 48 a + 27 + \left(11 a + 33\right)\cdot 83 + \left(27 a + 34\right)\cdot 83^{2} + \left(33 a + 31\right)\cdot 83^{3} + \left(56 a + 8\right)\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 5 }$ $=$ $ a + 70 + \left(45 a + 20\right)\cdot 83 + \left(24 a + 47\right)\cdot 83^{2} + \left(15 a + 42\right)\cdot 83^{3} + \left(81 a + 23\right)\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 74 a + 80 + \left(7 a + 65\right)\cdot 83 + \left(59 a + 19\right)\cdot 83^{2} + \left(54 a + 37\right)\cdot 83^{3} + \left(75 a + 16\right)\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 35 a + 75 + \left(71 a + 79\right)\cdot 83 + \left(55 a + 49\right)\cdot 83^{2} + \left(49 a + 37\right)\cdot 83^{3} + \left(26 a + 31\right)\cdot 83^{4} +O\left(83^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$
$1$ $1$ $()$ $14$
$21$ $2$ $(1,2)$ $-4$
$105$ $2$ $(1,2)(3,4)(5,6)$ $0$
$105$ $2$ $(1,2)(3,4)$ $2$
$70$ $3$ $(1,2,3)$ $-1$
$280$ $3$ $(1,2,3)(4,5,6)$ $2$
$210$ $4$ $(1,2,3,4)$ $2$
$630$ $4$ $(1,2,3,4)(5,6)$ $0$
$504$ $5$ $(1,2,3,4,5)$ $-1$
$210$ $6$ $(1,2,3)(4,5)(6,7)$ $-1$
$420$ $6$ $(1,2,3)(4,5)$ $-1$
$840$ $6$ $(1,2,3,4,5,6)$ $0$
$720$ $7$ $(1,2,3,4,5,6,7)$ $0$
$504$ $10$ $(1,2,3,4,5)(6,7)$ $1$
$420$ $12$ $(1,2,3,4)(5,6,7)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.