Properties

Label 14.13e4_211e4_28631e4.21t38.1
Dimension 14
Group $S_7$
Conductor $ 13^{4} \cdot 211^{4} \cdot 28631^{4}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$14$
Group:$S_7$
Conductor:$38040769928555369518219500976321= 13^{4} \cdot 211^{4} \cdot 28631^{4} $
Artin number field: Splitting field of $f= x^{7} - x^{6} - 7 x^{5} + 5 x^{4} + 14 x^{3} - 4 x^{2} - 8 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 21T38
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 97 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 97 }$: $ x^{2} + 96 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 79 a + 72 + \left(20 a + 93\right)\cdot 97 + \left(86 a + 53\right)\cdot 97^{2} + \left(49 a + 55\right)\cdot 97^{3} + \left(14 a + 11\right)\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 48 + 85\cdot 97 + 43\cdot 97^{2} + 23\cdot 97^{3} + 81\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 18 a + 54 + \left(76 a + 35\right)\cdot 97 + \left(10 a + 22\right)\cdot 97^{2} + \left(47 a + 19\right)\cdot 97^{3} + \left(82 a + 73\right)\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 43 a + 49 + \left(74 a + 74\right)\cdot 97 + \left(41 a + 43\right)\cdot 97^{2} + \left(16 a + 94\right)\cdot 97^{3} + 19\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 54 a + 92 + \left(22 a + 8\right)\cdot 97 + \left(55 a + 11\right)\cdot 97^{2} + \left(80 a + 69\right)\cdot 97^{3} + \left(96 a + 3\right)\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 19 + 73\cdot 97 + 34\cdot 97^{2} + 12\cdot 97^{3} + 89\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 55 + 16\cdot 97 + 81\cdot 97^{2} + 16\cdot 97^{3} + 12\cdot 97^{4} +O\left(97^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$
$1$ $1$ $()$ $14$
$21$ $2$ $(1,2)$ $6$
$105$ $2$ $(1,2)(3,4)(5,6)$ $2$
$105$ $2$ $(1,2)(3,4)$ $2$
$70$ $3$ $(1,2,3)$ $2$
$280$ $3$ $(1,2,3)(4,5,6)$ $-1$
$210$ $4$ $(1,2,3,4)$ $0$
$630$ $4$ $(1,2,3,4)(5,6)$ $0$
$504$ $5$ $(1,2,3,4,5)$ $-1$
$210$ $6$ $(1,2,3)(4,5)(6,7)$ $2$
$420$ $6$ $(1,2,3)(4,5)$ $0$
$840$ $6$ $(1,2,3,4,5,6)$ $-1$
$720$ $7$ $(1,2,3,4,5,6,7)$ $0$
$504$ $10$ $(1,2,3,4,5)(6,7)$ $1$
$420$ $12$ $(1,2,3,4)(5,6,7)$ $0$
The blue line marks the conjugacy class containing complex conjugation.