Properties

Label 14.13e4_157e4_1367e4.21t38.1c1
Dimension 14
Group $S_7$
Conductor $ 13^{4} \cdot 157^{4} \cdot 1367^{4}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$14$
Group:$S_7$
Conductor:$60596295829303620069559681= 13^{4} \cdot 157^{4} \cdot 1367^{4} $
Artin number field: Splitting field of $f= x^{7} - x^{6} - 2 x^{5} + 3 x^{4} - 2 x^{3} - 3 x^{2} + 4 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 21T38
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{2} + 24 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 2 + 27\cdot 29 + 28\cdot 29^{2} + 16\cdot 29^{3} + 24\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 10 a + 22 + \left(4 a + 19\right)\cdot 29 + \left(12 a + 5\right)\cdot 29^{2} + \left(10 a + 26\right)\cdot 29^{3} + \left(17 a + 10\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 6 a + 11 + \left(21 a + 6\right)\cdot 29 + \left(20 a + 15\right)\cdot 29^{2} + \left(23 a + 4\right)\cdot 29^{3} + \left(24 a + 27\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 26 a + 21 + \left(17 a + 17\right)\cdot 29 + 18\cdot 29^{2} + \left(19 a + 18\right)\cdot 29^{3} + \left(25 a + 9\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 23 a + 12 + \left(7 a + 19\right)\cdot 29 + \left(8 a + 10\right)\cdot 29^{2} + \left(5 a + 15\right)\cdot 29^{3} + \left(4 a + 11\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 19 a + 14 + \left(24 a + 2\right)\cdot 29 + \left(16 a + 4\right)\cdot 29^{2} + \left(18 a + 8\right)\cdot 29^{3} + 11 a\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 3 a + 6 + \left(11 a + 23\right)\cdot 29 + \left(28 a + 3\right)\cdot 29^{2} + \left(9 a + 26\right)\cdot 29^{3} + \left(3 a + 2\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$14$
$21$$2$$(1,2)$$6$
$105$$2$$(1,2)(3,4)(5,6)$$2$
$105$$2$$(1,2)(3,4)$$2$
$70$$3$$(1,2,3)$$2$
$280$$3$$(1,2,3)(4,5,6)$$-1$
$210$$4$$(1,2,3,4)$$0$
$630$$4$$(1,2,3,4)(5,6)$$0$
$504$$5$$(1,2,3,4,5)$$-1$
$210$$6$$(1,2,3)(4,5)(6,7)$$2$
$420$$6$$(1,2,3)(4,5)$$0$
$840$$6$$(1,2,3,4,5,6)$$-1$
$720$$7$$(1,2,3,4,5,6,7)$$0$
$504$$10$$(1,2,3,4,5)(6,7)$$1$
$420$$12$$(1,2,3,4)(5,6,7)$$0$
The blue line marks the conjugacy class containing complex conjugation.