Properties

Label 14.1399e10_21911e10.42t413.1
Dimension 14
Group $S_7$
Conductor $ 1399^{10} \cdot 21911^{10}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$14$
Group:$S_7$
Conductor:$732485671172267359118170764304528115287904799752720357032567205040877989601= 1399^{10} \cdot 21911^{10} $
Artin number field: Splitting field of $f= x^{7} - 7 x^{5} - x^{4} + 11 x^{3} + 3 x^{2} - 3 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 42T413
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 83 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 83 }$: $ x^{2} + 82 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 80 a + \left(32 a + 59\right)\cdot 83 + \left(13 a + 79\right)\cdot 83^{2} + \left(48 a + 56\right)\cdot 83^{3} + \left(75 a + 29\right)\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 3 a + 80 + \left(50 a + 11\right)\cdot 83 + \left(69 a + 60\right)\cdot 83^{2} + \left(34 a + 8\right)\cdot 83^{3} + \left(7 a + 57\right)\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 26 a + 80 + \left(64 a + 75\right)\cdot 83 + \left(48 a + 7\right)\cdot 83^{2} + \left(27 a + 4\right)\cdot 83^{3} + \left(27 a + 4\right)\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 18 + 72\cdot 83 + 79\cdot 83^{2} + 83^{3} + 52\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 6 + 44\cdot 83 + 66\cdot 83^{2} + 59\cdot 83^{3} + 15\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 57 a + 23 + \left(18 a + 31\right)\cdot 83 + \left(34 a + 75\right)\cdot 83^{2} + \left(55 a + 65\right)\cdot 83^{3} + \left(55 a + 3\right)\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 42 + 37\cdot 83 + 45\cdot 83^{2} + 51\cdot 83^{3} + 3\cdot 83^{4} +O\left(83^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$
$1$ $1$ $()$ $14$
$21$ $2$ $(1,2)$ $-6$
$105$ $2$ $(1,2)(3,4)(5,6)$ $-2$
$105$ $2$ $(1,2)(3,4)$ $2$
$70$ $3$ $(1,2,3)$ $2$
$280$ $3$ $(1,2,3)(4,5,6)$ $-1$
$210$ $4$ $(1,2,3,4)$ $0$
$630$ $4$ $(1,2,3,4)(5,6)$ $0$
$504$ $5$ $(1,2,3,4,5)$ $-1$
$210$ $6$ $(1,2,3)(4,5)(6,7)$ $2$
$420$ $6$ $(1,2,3)(4,5)$ $0$
$840$ $6$ $(1,2,3,4,5,6)$ $1$
$720$ $7$ $(1,2,3,4,5,6,7)$ $0$
$504$ $10$ $(1,2,3,4,5)(6,7)$ $-1$
$420$ $12$ $(1,2,3,4)(5,6,7)$ $0$
The blue line marks the conjugacy class containing complex conjugation.