Properties

Label 14.137e4_7937e4.21t38.1
Dimension 14
Group $S_7$
Conductor $ 137^{4} \cdot 7937^{4}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$14$
Group:$S_7$
Conductor:$1398001990763604536149921= 137^{4} \cdot 7937^{4} $
Artin number field: Splitting field of $f= x^{7} - x^{6} - x^{5} + 3 x^{4} - 2 x^{3} - x^{2} + x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 21T38
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 109 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 109 }$: $ x^{2} + 108 x + 6 $
Roots:
$r_{ 1 }$ $=$ $ 83 a + 80 + \left(19 a + 76\right)\cdot 109 + \left(53 a + 64\right)\cdot 109^{2} + \left(75 a + 99\right)\cdot 109^{3} + \left(58 a + 21\right)\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 79 + 72\cdot 109 + 101\cdot 109^{2} + 77\cdot 109^{3} + 6\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 66 a + 66 + \left(8 a + 83\right)\cdot 109 + \left(14 a + 91\right)\cdot 109^{2} + \left(57 a + 25\right)\cdot 109^{3} + \left(108 a + 64\right)\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 26 a + 54 + \left(89 a + 13\right)\cdot 109 + \left(55 a + 98\right)\cdot 109^{2} + \left(33 a + 12\right)\cdot 109^{3} + \left(50 a + 5\right)\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 55 + 30\cdot 109 + 101\cdot 109^{2} + 104\cdot 109^{3} + 26\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 80 + 23\cdot 109 + 99\cdot 109^{2} + 45\cdot 109^{3} + 86\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 43 a + 23 + \left(100 a + 26\right)\cdot 109 + \left(94 a + 97\right)\cdot 109^{2} + \left(51 a + 68\right)\cdot 109^{3} + 6\cdot 109^{4} +O\left(109^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$
$1$ $1$ $()$ $14$
$21$ $2$ $(1,2)$ $6$
$105$ $2$ $(1,2)(3,4)(5,6)$ $2$
$105$ $2$ $(1,2)(3,4)$ $2$
$70$ $3$ $(1,2,3)$ $2$
$280$ $3$ $(1,2,3)(4,5,6)$ $-1$
$210$ $4$ $(1,2,3,4)$ $0$
$630$ $4$ $(1,2,3,4)(5,6)$ $0$
$504$ $5$ $(1,2,3,4,5)$ $-1$
$210$ $6$ $(1,2,3)(4,5)(6,7)$ $2$
$420$ $6$ $(1,2,3)(4,5)$ $0$
$840$ $6$ $(1,2,3,4,5,6)$ $-1$
$720$ $7$ $(1,2,3,4,5,6,7)$ $0$
$504$ $10$ $(1,2,3,4,5)(6,7)$ $1$
$420$ $12$ $(1,2,3,4)(5,6,7)$ $0$
The blue line marks the conjugacy class containing complex conjugation.