Properties

Label 14.11e4_103e4_701e4.21t38.1c1
Dimension 14
Group $S_7$
Conductor $ 11^{4} \cdot 103^{4} \cdot 701^{4}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$14$
Group:$S_7$
Conductor:$397916283174105265607521= 11^{4} \cdot 103^{4} \cdot 701^{4} $
Artin number field: Splitting field of $f= x^{7} - x^{5} - 3 x^{4} - x^{3} + 3 x^{2} + x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 21T38
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 113 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 113 }$: $ x^{2} + 101 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 83 a + 106 + \left(30 a + 15\right)\cdot 113 + \left(78 a + 87\right)\cdot 113^{2} + \left(103 a + 111\right)\cdot 113^{3} + \left(97 a + 96\right)\cdot 113^{4} +O\left(113^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 30 a + 85 + \left(82 a + 75\right)\cdot 113 + \left(34 a + 91\right)\cdot 113^{2} + \left(9 a + 34\right)\cdot 113^{3} + \left(15 a + 38\right)\cdot 113^{4} +O\left(113^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 74 + 95\cdot 113 + 78\cdot 113^{2} + 72\cdot 113^{3} + 112\cdot 113^{4} +O\left(113^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 85 a + 88 + \left(10 a + 98\right)\cdot 113 + \left(11 a + 57\right)\cdot 113^{2} + \left(79 a + 91\right)\cdot 113^{3} + \left(35 a + 46\right)\cdot 113^{4} +O\left(113^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 61 + 29\cdot 113 + 87\cdot 113^{2} + 94\cdot 113^{3} + 32\cdot 113^{4} +O\left(113^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 60 + 106\cdot 113 + 94\cdot 113^{2} + 33\cdot 113^{3} + 67\cdot 113^{4} +O\left(113^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 28 a + 91 + \left(102 a + 29\right)\cdot 113 + \left(101 a + 67\right)\cdot 113^{2} + \left(33 a + 12\right)\cdot 113^{3} + \left(77 a + 57\right)\cdot 113^{4} +O\left(113^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$14$
$21$$2$$(1,2)$$6$
$105$$2$$(1,2)(3,4)(5,6)$$2$
$105$$2$$(1,2)(3,4)$$2$
$70$$3$$(1,2,3)$$2$
$280$$3$$(1,2,3)(4,5,6)$$-1$
$210$$4$$(1,2,3,4)$$0$
$630$$4$$(1,2,3,4)(5,6)$$0$
$504$$5$$(1,2,3,4,5)$$-1$
$210$$6$$(1,2,3)(4,5)(6,7)$$2$
$420$$6$$(1,2,3)(4,5)$$0$
$840$$6$$(1,2,3,4,5,6)$$-1$
$720$$7$$(1,2,3,4,5,6,7)$$0$
$504$$10$$(1,2,3,4,5)(6,7)$$1$
$420$$12$$(1,2,3,4)(5,6,7)$$0$
The blue line marks the conjugacy class containing complex conjugation.