Properties

Label 14.11e10_577e10_11003e10.42t413.1
Dimension 14
Group $S_7$
Conductor $ 11^{10} \cdot 577^{10} \cdot 11003^{10}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$14$
Group:$S_7$
Conductor:$2759282158024921618666632360936482451102955205765424285479931351638874634112401= 11^{10} \cdot 577^{10} \cdot 11003^{10} $
Artin number field: Splitting field of $f= x^{7} - 3 x^{6} - 4 x^{5} + 16 x^{4} - 20 x^{2} + 8 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 42T413
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: $ x^{2} + 29 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 4 a + 28 + \left(10 a + 30\right)\cdot 31 + \left(17 a + 23\right)\cdot 31^{2} + \left(13 a + 10\right)\cdot 31^{3} + \left(21 a + 27\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 29 + 17\cdot 31^{2} + 31^{3} + 24\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 5 a + 2 + \left(16 a + 4\right)\cdot 31 + 26\cdot 31^{2} + \left(14 a + 24\right)\cdot 31^{3} + \left(13 a + 24\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 26 a + 12 + 14 a\cdot 31 + \left(30 a + 11\right)\cdot 31^{2} + \left(16 a + 21\right)\cdot 31^{3} + \left(17 a + 6\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 14 + 16\cdot 31 + 10\cdot 31^{2} + 22\cdot 31^{3} + 5\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 27 a + 5 + \left(20 a + 16\right)\cdot 31 + \left(13 a + 17\right)\cdot 31^{2} + \left(17 a + 20\right)\cdot 31^{3} + \left(9 a + 25\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 6 + 24\cdot 31 + 17\cdot 31^{2} + 22\cdot 31^{3} + 9\cdot 31^{4} +O\left(31^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$
$1$ $1$ $()$ $14$
$21$ $2$ $(1,2)$ $-6$
$105$ $2$ $(1,2)(3,4)(5,6)$ $-2$
$105$ $2$ $(1,2)(3,4)$ $2$
$70$ $3$ $(1,2,3)$ $2$
$280$ $3$ $(1,2,3)(4,5,6)$ $-1$
$210$ $4$ $(1,2,3,4)$ $0$
$630$ $4$ $(1,2,3,4)(5,6)$ $0$
$504$ $5$ $(1,2,3,4,5)$ $-1$
$210$ $6$ $(1,2,3)(4,5)(6,7)$ $2$
$420$ $6$ $(1,2,3)(4,5)$ $0$
$840$ $6$ $(1,2,3,4,5,6)$ $1$
$720$ $7$ $(1,2,3,4,5,6,7)$ $0$
$504$ $10$ $(1,2,3,4,5)(6,7)$ $-1$
$420$ $12$ $(1,2,3,4)(5,6,7)$ $0$
The blue line marks the conjugacy class containing complex conjugation.