Properties

Label 14.11e10_309493e10.42t413.1c1
Dimension 14
Group $S_7$
Conductor $ 11^{10} \cdot 309493^{10}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$14$
Group:$S_7$
Conductor:$209139063568253827185991688686505717861850854605158991762324785649= 11^{10} \cdot 309493^{10} $
Artin number field: Splitting field of $f= x^{7} - 2 x^{5} - 3 x^{4} + x^{3} + 5 x^{2} - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 42T413
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 43 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 43 }$: $ x^{2} + 42 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ a + 15 + \left(2 a + 2\right)\cdot 43 + \left(13 a + 8\right)\cdot 43^{2} + \left(11 a + 10\right)\cdot 43^{3} + \left(9 a + 21\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 12 a + 16 + \left(2 a + 37\right)\cdot 43 + \left(9 a + 13\right)\cdot 43^{2} + 43^{3} + \left(4 a + 34\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 42 a + 16 + \left(40 a + 3\right)\cdot 43 + \left(29 a + 19\right)\cdot 43^{2} + \left(31 a + 8\right)\cdot 43^{3} + \left(33 a + 19\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 23 + 15\cdot 43 + 35\cdot 43^{2} + 33\cdot 43^{3} + 38\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 2 + 19\cdot 43 + 21\cdot 43^{2} + 23\cdot 43^{3} + 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 31 a + 28 + \left(40 a + 27\right)\cdot 43 + \left(33 a + 20\right)\cdot 43^{2} + \left(42 a + 35\right)\cdot 43^{3} + \left(38 a + 37\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 29 + 23\cdot 43 + 10\cdot 43^{2} + 16\cdot 43^{3} + 19\cdot 43^{4} +O\left(43^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$14$
$21$$2$$(1,2)$$-6$
$105$$2$$(1,2)(3,4)(5,6)$$-2$
$105$$2$$(1,2)(3,4)$$2$
$70$$3$$(1,2,3)$$2$
$280$$3$$(1,2,3)(4,5,6)$$-1$
$210$$4$$(1,2,3,4)$$0$
$630$$4$$(1,2,3,4)(5,6)$$0$
$504$$5$$(1,2,3,4,5)$$-1$
$210$$6$$(1,2,3)(4,5)(6,7)$$2$
$420$$6$$(1,2,3)(4,5)$$0$
$840$$6$$(1,2,3,4,5,6)$$1$
$720$$7$$(1,2,3,4,5,6,7)$$0$
$504$$10$$(1,2,3,4,5)(6,7)$$-1$
$420$$12$$(1,2,3,4)(5,6,7)$$0$
The blue line marks the conjugacy class containing complex conjugation.