Properties

Label 14.113e4_8329e4.21t38.1
Dimension 14
Group $S_7$
Conductor $ 113^{4} \cdot 8329^{4}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$14$
Group:$S_7$
Conductor:$784666700064946732518241= 113^{4} \cdot 8329^{4} $
Artin number field: Splitting field of $f= x^{7} - 2 x^{5} + x^{3} - x^{2} - x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 21T38
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 43 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 43 }$: $ x^{2} + 42 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 16 a + 21 + \left(20 a + 10\right)\cdot 43 + \left(19 a + 21\right)\cdot 43^{2} + \left(42 a + 8\right)\cdot 43^{3} + \left(37 a + 15\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 25 + 30\cdot 43 + 19\cdot 43^{2} + 23\cdot 43^{3} + 25\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 27 a + 37 + \left(22 a + 14\right)\cdot 43 + \left(23 a + 20\right)\cdot 43^{2} + 31\cdot 43^{3} + \left(5 a + 10\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 16 + 40\cdot 43 + 21\cdot 43^{2} + 10\cdot 43^{3} + 28\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 15 + 28\cdot 43 + 24\cdot 43^{2} + 24\cdot 43^{3} + 13\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 13 a + 1 + \left(20 a + 20\right)\cdot 43 + \left(27 a + 28\right)\cdot 43^{2} + \left(19 a + 40\right)\cdot 43^{3} + \left(41 a + 6\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 30 a + 14 + \left(22 a + 27\right)\cdot 43 + \left(15 a + 35\right)\cdot 43^{2} + \left(23 a + 32\right)\cdot 43^{3} + \left(a + 28\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$
$1$ $1$ $()$ $14$
$21$ $2$ $(1,2)$ $6$
$105$ $2$ $(1,2)(3,4)(5,6)$ $2$
$105$ $2$ $(1,2)(3,4)$ $2$
$70$ $3$ $(1,2,3)$ $2$
$280$ $3$ $(1,2,3)(4,5,6)$ $-1$
$210$ $4$ $(1,2,3,4)$ $0$
$630$ $4$ $(1,2,3,4)(5,6)$ $0$
$504$ $5$ $(1,2,3,4,5)$ $-1$
$210$ $6$ $(1,2,3)(4,5)(6,7)$ $2$
$420$ $6$ $(1,2,3)(4,5)$ $0$
$840$ $6$ $(1,2,3,4,5,6)$ $-1$
$720$ $7$ $(1,2,3,4,5,6,7)$ $0$
$504$ $10$ $(1,2,3,4,5)(6,7)$ $1$
$420$ $12$ $(1,2,3,4)(5,6,7)$ $0$
The blue line marks the conjugacy class containing complex conjugation.