Properties

Label 14.109e9_6389e9.30t565.1
Dimension 14
Group $S_7$
Conductor $ 109^{9} \cdot 6389^{9}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$14$
Group:$S_7$
Conductor:$38524275027224590362379703867172569593940285528827601= 109^{9} \cdot 6389^{9} $
Artin number field: Splitting field of $f= x^{7} - x^{6} + 2 x^{4} - 4 x^{3} + 4 x^{2} - 4 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 30T565
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 71 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 71 }$: $ x^{2} + 69 x + 7 $
Roots:
$r_{ 1 }$ $=$ $ 7 a + \left(13 a + 54\right)\cdot 71 + \left(44 a + 46\right)\cdot 71^{2} + \left(42 a + 13\right)\cdot 71^{3} + \left(16 a + 40\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 64 a + 14 + \left(57 a + 2\right)\cdot 71 + \left(26 a + 51\right)\cdot 71^{2} + \left(28 a + 54\right)\cdot 71^{3} + \left(54 a + 30\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 32 a + 38 + \left(49 a + 29\right)\cdot 71 + \left(52 a + 3\right)\cdot 71^{2} + \left(52 a + 25\right)\cdot 71^{3} + \left(56 a + 47\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 33 a + 63 + \left(45 a + 41\right)\cdot 71 + \left(59 a + 50\right)\cdot 71^{2} + \left(30 a + 62\right)\cdot 71^{3} + \left(38 a + 1\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 10 + 31\cdot 71 + 19\cdot 71^{2} + 56\cdot 71^{3} + 7\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 38 a + 58 + \left(25 a + 28\right)\cdot 71 + \left(11 a + 53\right)\cdot 71^{2} + \left(40 a + 64\right)\cdot 71^{3} + \left(32 a + 47\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 39 a + 31 + \left(21 a + 25\right)\cdot 71 + \left(18 a + 59\right)\cdot 71^{2} + \left(18 a + 6\right)\cdot 71^{3} + \left(14 a + 37\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$
$1$ $1$ $()$ $14$
$21$ $2$ $(1,2)$ $-4$
$105$ $2$ $(1,2)(3,4)(5,6)$ $0$
$105$ $2$ $(1,2)(3,4)$ $2$
$70$ $3$ $(1,2,3)$ $-1$
$280$ $3$ $(1,2,3)(4,5,6)$ $2$
$210$ $4$ $(1,2,3,4)$ $2$
$630$ $4$ $(1,2,3,4)(5,6)$ $0$
$504$ $5$ $(1,2,3,4,5)$ $-1$
$210$ $6$ $(1,2,3)(4,5)(6,7)$ $-1$
$420$ $6$ $(1,2,3)(4,5)$ $-1$
$840$ $6$ $(1,2,3,4,5,6)$ $0$
$720$ $7$ $(1,2,3,4,5,6,7)$ $0$
$504$ $10$ $(1,2,3,4,5)(6,7)$ $1$
$420$ $12$ $(1,2,3,4)(5,6,7)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.