Properties

Label 14.109e10_293e10_2137e10.42t413.1
Dimension 14
Group $S_7$
Conductor $ 109^{10} \cdot 293^{10} \cdot 2137^{10}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$14$
Group:$S_7$
Conductor:$2192736291558974679472415532838799661304911047784770718611813510797689957706801= 109^{10} \cdot 293^{10} \cdot 2137^{10} $
Artin number field: Splitting field of $f= x^{7} - x^{6} - 7 x^{5} + 2 x^{4} + 12 x^{3} + x^{2} - 4 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 42T413
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 67 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 67 }$: $ x^{2} + 63 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 50 a + 21 + \left(15 a + 24\right)\cdot 67 + \left(37 a + 6\right)\cdot 67^{2} + \left(40 a + 17\right)\cdot 67^{3} + \left(40 a + 65\right)\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 45 a + 42 + \left(63 a + 53\right)\cdot 67 + \left(31 a + 23\right)\cdot 67^{2} + \left(30 a + 4\right)\cdot 67^{3} + \left(47 a + 13\right)\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 37 + 59\cdot 67 + 10\cdot 67^{2} + 62\cdot 67^{3} + 31\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 38 a + 55 + \left(32 a + 2\right)\cdot 67 + \left(51 a + 47\right)\cdot 67^{2} + \left(30 a + 38\right)\cdot 67^{3} + \left(8 a + 31\right)\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 29 a + 6 + \left(34 a + 28\right)\cdot 67 + \left(15 a + 19\right)\cdot 67^{2} + \left(36 a + 43\right)\cdot 67^{3} + \left(58 a + 34\right)\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 22 a + 21 + \left(3 a + 62\right)\cdot 67 + \left(35 a + 20\right)\cdot 67^{2} + \left(36 a + 27\right)\cdot 67^{3} + \left(19 a + 38\right)\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 17 a + 20 + \left(51 a + 37\right)\cdot 67 + \left(29 a + 5\right)\cdot 67^{2} + \left(26 a + 8\right)\cdot 67^{3} + \left(26 a + 53\right)\cdot 67^{4} +O\left(67^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$
$1$ $1$ $()$ $14$
$21$ $2$ $(1,2)$ $-6$
$105$ $2$ $(1,2)(3,4)(5,6)$ $-2$
$105$ $2$ $(1,2)(3,4)$ $2$
$70$ $3$ $(1,2,3)$ $2$
$280$ $3$ $(1,2,3)(4,5,6)$ $-1$
$210$ $4$ $(1,2,3,4)$ $0$
$630$ $4$ $(1,2,3,4)(5,6)$ $0$
$504$ $5$ $(1,2,3,4,5)$ $-1$
$210$ $6$ $(1,2,3)(4,5)(6,7)$ $2$
$420$ $6$ $(1,2,3)(4,5)$ $0$
$840$ $6$ $(1,2,3,4,5,6)$ $1$
$720$ $7$ $(1,2,3,4,5,6,7)$ $0$
$504$ $10$ $(1,2,3,4,5)(6,7)$ $-1$
$420$ $12$ $(1,2,3,4)(5,6,7)$ $0$
The blue line marks the conjugacy class containing complex conjugation.