Properties

Label 14.109e10_2659e10.42t413.1
Dimension 14
Group $S_7$
Conductor $ 109^{10} \cdot 2659^{10}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$14$
Group:$S_7$
Conductor:$4182619450410488201473381192073448921516686705225338801= 109^{10} \cdot 2659^{10} $
Artin number field: Splitting field of $f= x^{7} + x^{5} - x^{4} + x^{3} - x^{2} + x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 42T413
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 83 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 83 }$: $ x^{2} + 82 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 81 a + 20 + \left(81 a + 80\right)\cdot 83 + \left(18 a + 17\right)\cdot 83^{2} + \left(44 a + 62\right)\cdot 83^{3} + \left(69 a + 17\right)\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 2 a + 40 + \left(41 a + 10\right)\cdot 83 + \left(43 a + 69\right)\cdot 83^{2} + \left(3 a + 66\right)\cdot 83^{3} + \left(14 a + 64\right)\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 27 a + 30 + \left(21 a + 23\right)\cdot 83 + \left(2 a + 43\right)\cdot 83^{2} + \left(29 a + 8\right)\cdot 83^{3} + \left(70 a + 62\right)\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 2 a + 18 + \left(a + 81\right)\cdot 83 + \left(64 a + 37\right)\cdot 83^{2} + \left(38 a + 4\right)\cdot 83^{3} + \left(13 a + 43\right)\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 56 a + 57 + \left(61 a + 17\right)\cdot 83 + \left(80 a + 24\right)\cdot 83^{2} + \left(53 a + 35\right)\cdot 83^{3} + \left(12 a + 20\right)\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 81 a + 42 + \left(41 a + 49\right)\cdot 83 + \left(39 a + 71\right)\cdot 83^{2} + \left(79 a + 26\right)\cdot 83^{3} + \left(68 a + 75\right)\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 42 + 69\cdot 83 + 67\cdot 83^{2} + 44\cdot 83^{3} + 48\cdot 83^{4} +O\left(83^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$
$1$ $1$ $()$ $14$
$21$ $2$ $(1,2)$ $-6$
$105$ $2$ $(1,2)(3,4)(5,6)$ $-2$
$105$ $2$ $(1,2)(3,4)$ $2$
$70$ $3$ $(1,2,3)$ $2$
$280$ $3$ $(1,2,3)(4,5,6)$ $-1$
$210$ $4$ $(1,2,3,4)$ $0$
$630$ $4$ $(1,2,3,4)(5,6)$ $0$
$504$ $5$ $(1,2,3,4,5)$ $-1$
$210$ $6$ $(1,2,3)(4,5)(6,7)$ $2$
$420$ $6$ $(1,2,3)(4,5)$ $0$
$840$ $6$ $(1,2,3,4,5,6)$ $1$
$720$ $7$ $(1,2,3,4,5,6,7)$ $0$
$504$ $10$ $(1,2,3,4,5)(6,7)$ $-1$
$420$ $12$ $(1,2,3,4)(5,6,7)$ $0$
The blue line marks the conjugacy class containing complex conjugation.