Properties

Label 14.1069193e9.30t565.1
Dimension 14
Group $S_7$
Conductor $ 1069193^{9}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$14$
Group:$S_7$
Conductor:$1826017607507295169804579333221952403759745551039989193= 1069193^{9} $
Artin number field: Splitting field of $f= x^{7} - 2 x^{5} - 2 x^{4} + 3 x^{3} + 2 x^{2} - 2 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 30T565
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 103 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 103 }$: $ x^{2} + 102 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 86 a + 30 + \left(69 a + 80\right)\cdot 103 + \left(31 a + 34\right)\cdot 103^{2} + \left(11 a + 19\right)\cdot 103^{3} + \left(85 a + 30\right)\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 98 a + 78 + \left(43 a + 60\right)\cdot 103 + \left(64 a + 29\right)\cdot 103^{2} + \left(94 a + 68\right)\cdot 103^{3} + \left(81 a + 98\right)\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 17 a + 13 + \left(33 a + 64\right)\cdot 103 + \left(71 a + 99\right)\cdot 103^{2} + \left(91 a + 101\right)\cdot 103^{3} + 17 a\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 86 a + 83 + \left(17 a + 81\right)\cdot 103 + \left(85 a + 22\right)\cdot 103^{2} + \left(37 a + 64\right)\cdot 103^{3} + \left(66 a + 40\right)\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 17 a + 66 + \left(85 a + 13\right)\cdot 103 + \left(17 a + 90\right)\cdot 103^{2} + \left(65 a + 16\right)\cdot 103^{3} + \left(36 a + 69\right)\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 69 + 103 + 85\cdot 103^{2} + 42\cdot 103^{3} + 86\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 5 a + 73 + \left(59 a + 6\right)\cdot 103 + \left(38 a + 50\right)\cdot 103^{2} + \left(8 a + 98\right)\cdot 103^{3} + \left(21 a + 85\right)\cdot 103^{4} +O\left(103^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$
$1$ $1$ $()$ $14$
$21$ $2$ $(1,2)$ $-4$
$105$ $2$ $(1,2)(3,4)(5,6)$ $0$
$105$ $2$ $(1,2)(3,4)$ $2$
$70$ $3$ $(1,2,3)$ $-1$
$280$ $3$ $(1,2,3)(4,5,6)$ $2$
$210$ $4$ $(1,2,3,4)$ $2$
$630$ $4$ $(1,2,3,4)(5,6)$ $0$
$504$ $5$ $(1,2,3,4,5)$ $-1$
$210$ $6$ $(1,2,3)(4,5)(6,7)$ $-1$
$420$ $6$ $(1,2,3)(4,5)$ $-1$
$840$ $6$ $(1,2,3,4,5,6)$ $0$
$720$ $7$ $(1,2,3,4,5,6,7)$ $0$
$504$ $10$ $(1,2,3,4,5)(6,7)$ $1$
$420$ $12$ $(1,2,3,4)(5,6,7)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.