Properties

Label 14.1069193e10.42t413.1c1
Dimension 14
Group $S_7$
Conductor $ 1069193^{10}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$14$
Group:$S_7$
Conductor:$1952365243823547444488867591025578956433093624953099165231249= 1069193^{10} $
Artin number field: Splitting field of $f= x^{7} - 2 x^{5} - 2 x^{4} + 3 x^{3} + 2 x^{2} - 2 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 42T413
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 103 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 103 }$: $ x^{2} + 102 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 86 a + 30 + \left(69 a + 80\right)\cdot 103 + \left(31 a + 34\right)\cdot 103^{2} + \left(11 a + 19\right)\cdot 103^{3} + \left(85 a + 30\right)\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 98 a + 78 + \left(43 a + 60\right)\cdot 103 + \left(64 a + 29\right)\cdot 103^{2} + \left(94 a + 68\right)\cdot 103^{3} + \left(81 a + 98\right)\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 17 a + 13 + \left(33 a + 64\right)\cdot 103 + \left(71 a + 99\right)\cdot 103^{2} + \left(91 a + 101\right)\cdot 103^{3} + 17 a\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 86 a + 83 + \left(17 a + 81\right)\cdot 103 + \left(85 a + 22\right)\cdot 103^{2} + \left(37 a + 64\right)\cdot 103^{3} + \left(66 a + 40\right)\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 17 a + 66 + \left(85 a + 13\right)\cdot 103 + \left(17 a + 90\right)\cdot 103^{2} + \left(65 a + 16\right)\cdot 103^{3} + \left(36 a + 69\right)\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 69 + 103 + 85\cdot 103^{2} + 42\cdot 103^{3} + 86\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 5 a + 73 + \left(59 a + 6\right)\cdot 103 + \left(38 a + 50\right)\cdot 103^{2} + \left(8 a + 98\right)\cdot 103^{3} + \left(21 a + 85\right)\cdot 103^{4} +O\left(103^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$14$
$21$$2$$(1,2)$$-6$
$105$$2$$(1,2)(3,4)(5,6)$$-2$
$105$$2$$(1,2)(3,4)$$2$
$70$$3$$(1,2,3)$$2$
$280$$3$$(1,2,3)(4,5,6)$$-1$
$210$$4$$(1,2,3,4)$$0$
$630$$4$$(1,2,3,4)(5,6)$$0$
$504$$5$$(1,2,3,4,5)$$-1$
$210$$6$$(1,2,3)(4,5)(6,7)$$2$
$420$$6$$(1,2,3)(4,5)$$0$
$840$$6$$(1,2,3,4,5,6)$$1$
$720$$7$$(1,2,3,4,5,6,7)$$0$
$504$$10$$(1,2,3,4,5)(6,7)$$-1$
$420$$12$$(1,2,3,4)(5,6,7)$$0$
The blue line marks the conjugacy class containing complex conjugation.