Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 229 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 229 }$: $ x^{2} + 228 x + 6 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 109 + 68\cdot 229 + 208\cdot 229^{2} + 16\cdot 229^{3} + 137\cdot 229^{4} +O\left(229^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 223 a + 16 + \left(77 a + 166\right)\cdot 229 + \left(80 a + 206\right)\cdot 229^{2} + \left(132 a + 39\right)\cdot 229^{3} + \left(160 a + 42\right)\cdot 229^{4} +O\left(229^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 185 + 5\cdot 229 + 56\cdot 229^{2} + 76\cdot 229^{3} + 172\cdot 229^{4} +O\left(229^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 6 a + 10 + \left(151 a + 21\right)\cdot 229 + \left(148 a + 209\right)\cdot 229^{2} + \left(96 a + 91\right)\cdot 229^{3} + \left(68 a + 70\right)\cdot 229^{4} +O\left(229^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 217 + 22\cdot 229 + 70\cdot 229^{2} + 211\cdot 229^{3} + 102\cdot 229^{4} +O\left(229^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 156 + 152\cdot 229 + 114\cdot 229^{2} + 204\cdot 229^{3} + 146\cdot 229^{4} +O\left(229^{ 5 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 224 + 20\cdot 229 + 51\cdot 229^{2} + 46\cdot 229^{3} + 15\cdot 229^{4} +O\left(229^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 7 }$
| Cycle notation |
| $(1,2,3,4,5,6,7)$ |
| $(1,2)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 7 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$14$ |
| $21$ |
$2$ |
$(1,2)$ |
$4$ |
| $105$ |
$2$ |
$(1,2)(3,4)(5,6)$ |
$0$ |
| $105$ |
$2$ |
$(1,2)(3,4)$ |
$2$ |
| $70$ |
$3$ |
$(1,2,3)$ |
$-1$ |
| $280$ |
$3$ |
$(1,2,3)(4,5,6)$ |
$2$ |
| $210$ |
$4$ |
$(1,2,3,4)$ |
$-2$ |
| $630$ |
$4$ |
$(1,2,3,4)(5,6)$ |
$0$ |
| $504$ |
$5$ |
$(1,2,3,4,5)$ |
$-1$ |
| $210$ |
$6$ |
$(1,2,3)(4,5)(6,7)$ |
$-1$ |
| $420$ |
$6$ |
$(1,2,3)(4,5)$ |
$1$ |
| $840$ |
$6$ |
$(1,2,3,4,5,6)$ |
$0$ |
| $720$ |
$7$ |
$(1,2,3,4,5,6,7)$ |
$0$ |
| $504$ |
$10$ |
$(1,2,3,4,5)(6,7)$ |
$-1$ |
| $420$ |
$12$ |
$(1,2,3,4)(5,6,7)$ |
$1$ |
The blue line marks the conjugacy class containing complex conjugation.