Properties

Label 14.1045573e10.42t413.1c1
Dimension 14
Group $S_7$
Conductor $ 1045573^{10}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$14$
Group:$S_7$
Conductor:$1561505788898899178255996654074021216468317297413849295222649= 1045573^{10} $
Artin number field: Splitting field of $f= x^{7} - x^{6} - x^{5} + 2 x^{4} + x^{3} - 2 x^{2} - 2 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 42T413
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 229 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 229 }$: $ x^{2} + 228 x + 6 $
Roots:
$r_{ 1 }$ $=$ $ 109 + 68\cdot 229 + 208\cdot 229^{2} + 16\cdot 229^{3} + 137\cdot 229^{4} +O\left(229^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 223 a + 16 + \left(77 a + 166\right)\cdot 229 + \left(80 a + 206\right)\cdot 229^{2} + \left(132 a + 39\right)\cdot 229^{3} + \left(160 a + 42\right)\cdot 229^{4} +O\left(229^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 185 + 5\cdot 229 + 56\cdot 229^{2} + 76\cdot 229^{3} + 172\cdot 229^{4} +O\left(229^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 6 a + 10 + \left(151 a + 21\right)\cdot 229 + \left(148 a + 209\right)\cdot 229^{2} + \left(96 a + 91\right)\cdot 229^{3} + \left(68 a + 70\right)\cdot 229^{4} +O\left(229^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 217 + 22\cdot 229 + 70\cdot 229^{2} + 211\cdot 229^{3} + 102\cdot 229^{4} +O\left(229^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 156 + 152\cdot 229 + 114\cdot 229^{2} + 204\cdot 229^{3} + 146\cdot 229^{4} +O\left(229^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 224 + 20\cdot 229 + 51\cdot 229^{2} + 46\cdot 229^{3} + 15\cdot 229^{4} +O\left(229^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$14$
$21$$2$$(1,2)$$-6$
$105$$2$$(1,2)(3,4)(5,6)$$-2$
$105$$2$$(1,2)(3,4)$$2$
$70$$3$$(1,2,3)$$2$
$280$$3$$(1,2,3)(4,5,6)$$-1$
$210$$4$$(1,2,3,4)$$0$
$630$$4$$(1,2,3,4)(5,6)$$0$
$504$$5$$(1,2,3,4,5)$$-1$
$210$$6$$(1,2,3)(4,5)(6,7)$$2$
$420$$6$$(1,2,3)(4,5)$$0$
$840$$6$$(1,2,3,4,5,6)$$1$
$720$$7$$(1,2,3,4,5,6,7)$$0$
$504$$10$$(1,2,3,4,5)(6,7)$$-1$
$420$$12$$(1,2,3,4)(5,6,7)$$0$
The blue line marks the conjugacy class containing complex conjugation.