Properties

Label 12.385...144.18t315.a.a
Dimension $12$
Group $S_3\wr S_3$
Conductor $3.851\times 10^{17}$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $12$
Group: $S_3\wr S_3$
Conductor: \(385129317228262144\)\(\medspace = 2^{8} \cdot 19^{5} \cdot 157^{4} \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 9.1.1309465408.1
Galois orbit size: $1$
Smallest permutation container: 18T315
Parity: odd
Determinant: 1.19.2t1.a.a
Projective image: $S_3\wr S_3$
Projective stem field: Galois closure of 9.1.1309465408.1

Defining polynomial

$f(x)$$=$ \( x^{9} - x^{8} + x^{7} + 2x^{5} - 5x^{4} + 5x^{3} - x^{2} - 2x + 1 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 11 }$ to precision 10.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 11 }$: \( x^{3} + 2x + 9 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 2 a^{2} + a + 9 + 8 a\cdot 11 + \left(4 a^{2} + 7 a + 2\right)\cdot 11^{2} + \left(3 a^{2} + 3 a\right)\cdot 11^{3} + \left(8 a^{2} + 7 a + 1\right)\cdot 11^{4} + \left(9 a^{2} + 8 a + 2\right)\cdot 11^{5} + \left(a + 7\right)\cdot 11^{6} + \left(8 a^{2} + a + 1\right)\cdot 11^{7} + \left(4 a^{2} + 8 a + 8\right)\cdot 11^{8} + \left(8 a^{2} + 7 a + 6\right)\cdot 11^{9} +O(11^{10})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 10 a^{2} + 7 a + 4 + \left(5 a^{2} + 2 a + 6\right)\cdot 11 + \left(2 a^{2} + 5 a + 4\right)\cdot 11^{2} + \left(8 a^{2} + 7 a + 6\right)\cdot 11^{3} + \left(3 a^{2} + 1\right)\cdot 11^{4} + \left(4 a^{2} + 3 a\right)\cdot 11^{5} + \left(7 a^{2} + 5 a\right)\cdot 11^{6} + \left(a^{2} + 3\right)\cdot 11^{7} + \left(10 a^{2} + 7 a + 10\right)\cdot 11^{8} + \left(10 a^{2} + 9 a + 7\right)\cdot 11^{9} +O(11^{10})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 7 a^{2} + 6 a + 9 + \left(4 a^{2} + 8 a + 10\right)\cdot 11 + \left(2 a^{2} + 10 a + 8\right)\cdot 11^{2} + \left(2 a^{2} + 5 a\right)\cdot 11^{3} + \left(2 a^{2} + 6 a + 9\right)\cdot 11^{4} + \left(2 a^{2} + 5 a + 4\right)\cdot 11^{5} + \left(9 a^{2} + 6 a + 1\right)\cdot 11^{6} + \left(4 a^{2} + 3 a\right)\cdot 11^{7} + \left(8 a^{2} + a + 9\right)\cdot 11^{8} + \left(3 a^{2} + 7 a + 8\right)\cdot 11^{9} +O(11^{10})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( a^{2} + 4 a + 4 + \left(2 a^{2} + 4 a + 3\right)\cdot 11 + \left(2 a^{2} + 2 a + 3\right)\cdot 11^{2} + \left(10 a^{2} + 5 a + 9\right)\cdot 11^{3} + \left(2 a + 5\right)\cdot 11^{4} + \left(5 a^{2} + 10\right)\cdot 11^{5} + \left(2 a^{2} + 8 a + 1\right)\cdot 11^{6} + \left(3 a^{2} + 5 a + 6\right)\cdot 11^{7} + \left(10 a^{2} + 4\right)\cdot 11^{8} + \left(5 a^{2} + 7 a + 3\right)\cdot 11^{9} +O(11^{10})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 9 a^{2} + 10 a + 10 + \left(a^{2} + 7 a\right)\cdot 11 + \left(7 a^{2} + 7 a + 7\right)\cdot 11^{2} + \left(9 a^{2} + 5 a + 4\right)\cdot 11^{3} + \left(3 a^{2} + 7 a + 5\right)\cdot 11^{4} + \left(10 a^{2} + 2 a + 4\right)\cdot 11^{5} + \left(9 a^{2} + 10 a + 3\right)\cdot 11^{6} + \left(3 a^{2} + 8 a + 2\right)\cdot 11^{7} + \left(5 a^{2} + 7 a\right)\cdot 11^{8} + \left(5 a^{2} + 9 a + 8\right)\cdot 11^{9} +O(11^{10})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 3 a^{2} + 5 a + 2 + \left(3 a^{2} + 10\right)\cdot 11 + \left(a^{2} + 9 a + 2\right)\cdot 11^{2} + \left(4 a^{2} + 8 a + 8\right)\cdot 11^{3} + \left(3 a^{2} + 2 a + 4\right)\cdot 11^{4} + \left(7 a^{2} + 5 a\right)\cdot 11^{5} + \left(4 a^{2} + 6 a\right)\cdot 11^{6} + \left(5 a^{2} + a + 8\right)\cdot 11^{7} + \left(6 a^{2} + 7 a + 1\right)\cdot 11^{8} + \left(5 a^{2} + 2 a + 8\right)\cdot 11^{9} +O(11^{10})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( a^{2} + 9 a + 1 + \left(7 a^{2} + 3 a + 3\right)\cdot 11 + \left(5 a^{2} + 6 a + 2\right)\cdot 11^{2} + \left(10 a^{2} + 6 a + 8\right)\cdot 11^{3} + \left(2 a^{2} + 2 a + 2\right)\cdot 11^{4} + \left(5 a^{2} + 6 a + 5\right)\cdot 11^{5} + \left(10 a^{2} + 9 a + 10\right)\cdot 11^{6} + \left(7 a^{2} + 9 a + 7\right)\cdot 11^{7} + \left(4 a^{2} + 9 a + 7\right)\cdot 11^{8} + \left(a^{2} + 5\right)\cdot 11^{9} +O(11^{10})\) Copy content Toggle raw display
$r_{ 8 }$ $=$ \( 3 a^{2} + 7 a + \left(10 a^{2} + 9 a\right)\cdot 11 + \left(2 a^{2} + 4 a + 6\right)\cdot 11^{2} + \left(9 a^{2} + 9 a + 6\right)\cdot 11^{3} + \left(5 a^{2} + a + 6\right)\cdot 11^{4} + \left(3 a^{2} + 10 a + 6\right)\cdot 11^{5} + \left(2 a^{2} + 5 a + 10\right)\cdot 11^{6} + \left(9 a^{2} + 8 a + 5\right)\cdot 11^{7} + \left(8 a^{2} + 10 a + 9\right)\cdot 11^{8} + \left(5 a^{2} + 2 a + 7\right)\cdot 11^{9} +O(11^{10})\) Copy content Toggle raw display
$r_{ 9 }$ $=$ \( 8 a^{2} + 6 a + 6 + \left(8 a^{2} + 9 a + 8\right)\cdot 11 + \left(4 a^{2} + 6\right)\cdot 11^{2} + \left(8 a^{2} + 2 a + 10\right)\cdot 11^{3} + \left(a^{2} + a + 6\right)\cdot 11^{4} + \left(7 a^{2} + 2 a + 9\right)\cdot 11^{5} + \left(7 a^{2} + a + 8\right)\cdot 11^{6} + \left(10 a^{2} + 4 a + 8\right)\cdot 11^{7} + \left(6 a^{2} + 2 a + 3\right)\cdot 11^{8} + \left(7 a^{2} + 7 a + 9\right)\cdot 11^{9} +O(11^{10})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(3,4)$
$(3,4,6)$
$(1,3,5)(2,4,7)(6,9,8)$
$(3,5)(4,7)(6,9)$
$(1,2,8)$
$(5,7,9)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character value
$1$$1$$()$$12$
$9$$2$$(3,4)$$4$
$18$$2$$(3,5)(4,7)(6,9)$$2$
$27$$2$$(1,2)(3,4)(5,7)$$0$
$27$$2$$(1,2)(3,4)$$0$
$54$$2$$(1,3)(2,4)(5,7)(6,8)$$2$
$6$$3$$(1,2,8)$$0$
$8$$3$$(1,8,2)(3,6,4)(5,9,7)$$3$
$12$$3$$(1,8,2)(3,6,4)$$-3$
$72$$3$$(1,3,5)(2,4,7)(6,9,8)$$0$
$54$$4$$(1,4,2,3)(6,8)$$0$
$162$$4$$(1,4,2,3)(5,7)(6,8)$$0$
$36$$6$$(1,2,8)(3,5)(4,7)(6,9)$$2$
$36$$6$$(1,6,8,4,2,3)$$-1$
$36$$6$$(1,2,8)(3,4)$$-2$
$36$$6$$(1,2,8)(3,4)(5,7,9)$$1$
$54$$6$$(1,8,2)(3,4)(5,7)$$0$
$72$$6$$(1,2,8)(3,5,6,9,4,7)$$-1$
$108$$6$$(1,6,8,4,2,3)(5,7)$$-1$
$216$$6$$(1,4,7,2,3,5)(6,9,8)$$0$
$144$$9$$(1,6,9,8,4,7,2,3,5)$$0$
$108$$12$$(1,2,8)(3,5,4,7)(6,9)$$0$

The blue line marks the conjugacy class containing complex conjugation.