Basic invariants
Dimension: | $12$ |
Group: | $S_3\wr S_3$ |
Conductor: | \(332355654611454976\)\(\medspace = 2^{10} \cdot 19^{5} \cdot 107^{4} \) |
Frobenius-Schur indicator: | $1$ |
Root number: | $1$ |
Artin number field: | Galois closure of 9.1.187881728.1 |
Galois orbit size: | $1$ |
Smallest permutation container: | 18T315 |
Parity: | odd |
Projective image: | $S_3\wr S_3$ |
Projective field: | Galois closure of 9.1.187881728.1 |
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 61 }$ to precision 10.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 61 }$:
\( x^{3} + 7x + 59 \)
Roots:
$r_{ 1 }$ | $=$ |
\( 49 a^{2} + 31 a + 9 + \left(49 a^{2} + 22 a + 5\right)\cdot 61 + \left(41 a^{2} + 29 a + 5\right)\cdot 61^{2} + \left(46 a^{2} + 22 a + 31\right)\cdot 61^{3} + \left(17 a^{2} + 20 a + 28\right)\cdot 61^{4} + \left(36 a^{2} + 33 a + 58\right)\cdot 61^{5} + \left(22 a^{2} + 4 a + 28\right)\cdot 61^{6} + \left(25 a^{2} + 11 a + 37\right)\cdot 61^{7} + \left(57 a^{2} + 29 a + 58\right)\cdot 61^{8} + \left(60 a + 5\right)\cdot 61^{9} +O(61^{10})\)
$r_{ 2 }$ |
$=$ |
\( 7 a^{2} + 10 a + 28 + \left(20 a^{2} + 18 a + 21\right)\cdot 61 + \left(46 a^{2} + 2 a + 41\right)\cdot 61^{2} + \left(13 a^{2} + 49 a + 26\right)\cdot 61^{3} + \left(21 a^{2} + 36 a + 60\right)\cdot 61^{4} + \left(52 a^{2} + 49 a + 31\right)\cdot 61^{5} + \left(44 a^{2} + 8 a + 42\right)\cdot 61^{6} + \left(25 a^{2} + 6 a + 29\right)\cdot 61^{7} + \left(44 a^{2} + 24 a + 28\right)\cdot 61^{8} + \left(58 a^{2} + 6 a + 19\right)\cdot 61^{9} +O(61^{10})\)
| $r_{ 3 }$ |
$=$ |
\( 12 a^{2} + 31 a + 57 + \left(24 a^{2} + 34 a + 5\right)\cdot 61 + \left(43 a^{2} + 7 a + 59\right)\cdot 61^{2} + \left(7 a^{2} + 29 a + 56\right)\cdot 61^{3} + \left(34 a^{2} + 3 a + 48\right)\cdot 61^{4} + \left(29 a^{2} + 27 a + 13\right)\cdot 61^{5} + \left(16 a^{2} + 48 a + 15\right)\cdot 61^{6} + \left(29 a^{2} + 51 a + 23\right)\cdot 61^{7} + \left(55 a^{2} + 27 a + 57\right)\cdot 61^{8} + \left(a^{2} + 19 a + 17\right)\cdot 61^{9} +O(61^{10})\)
| $r_{ 4 }$ |
$=$ |
\( 8 a^{2} + 26 a + 21 + \left(33 a^{2} + 52 a + 49\right)\cdot 61 + \left(40 a^{2} + 53 a + 39\right)\cdot 61^{2} + \left(6 a^{2} + 47 a + 47\right)\cdot 61^{3} + \left(35 a^{2} + 30 a + 7\right)\cdot 61^{4} + \left(12 a^{2} + 27 a + 29\right)\cdot 61^{5} + \left(30 a^{2} + 55 a + 3\right)\cdot 61^{6} + \left(47 a^{2} + 6 a + 39\right)\cdot 61^{7} + \left(60 a^{2} + 3 a + 33\right)\cdot 61^{8} + \left(52 a^{2} + 49 a + 45\right)\cdot 61^{9} +O(61^{10})\)
| $r_{ 5 }$ |
$=$ |
\( 8 a^{2} + 5 a + 18 + \left(56 a^{2} + 25 a + 53\right)\cdot 61 + \left(9 a^{2} + 27 a + 24\right)\cdot 61^{2} + \left(36 a^{2} + 48 a + 47\right)\cdot 61^{3} + \left(22 a^{2} + a + 35\right)\cdot 61^{4} + \left(11 a^{2} + 36 a + 30\right)\cdot 61^{5} + \left(34 a^{2} + 6 a + 16\right)\cdot 61^{6} + \left(44 a^{2} + 57 a + 13\right)\cdot 61^{7} + \left(23 a^{2} + 33 a + 31\right)\cdot 61^{8} + \left(38 a^{2} + 25 a + 25\right)\cdot 61^{9} +O(61^{10})\)
| $r_{ 6 }$ |
$=$ |
\( 50 a^{2} + 42 a + 5 + \left(24 a^{2} + 2 a + 23\right)\cdot 61 + \left(5 a^{2} + 47 a + 33\right)\cdot 61^{2} + \left(4 a^{2} + 34 a + 42\right)\cdot 61^{3} + \left(12 a^{2} + 60 a + 17\right)\cdot 61^{4} + \left(25 a^{2} + 43 a + 27\right)\cdot 61^{5} + \left(19 a + 38\right)\cdot 61^{6} + \left(54 a^{2} + 17 a + 39\right)\cdot 61^{7} + \left(13 a^{2} + 49 a + 48\right)\cdot 61^{8} + \left(8 a^{2} + 45 a + 27\right)\cdot 61^{9} +O(61^{10})\)
| $r_{ 7 }$ |
$=$ |
\( 41 a^{2} + 25 a + 50 + \left(41 a^{2} + a + 46\right)\cdot 61 + \left(7 a^{2} + 26 a + 34\right)\cdot 61^{2} + \left(17 a^{2} + 44 a + 19\right)\cdot 61^{3} + \left(4 a^{2} + 55 a + 11\right)\cdot 61^{4} + \left(20 a^{2} + 58 a + 10\right)\cdot 61^{5} + \left(10 a^{2} + 5 a + 27\right)\cdot 61^{6} + \left(48 a^{2} + 13 a + 50\right)\cdot 61^{7} + \left(42 a^{2} + 60 a + 38\right)\cdot 61^{8} + \left(20 a^{2} + 15 a + 44\right)\cdot 61^{9} +O(61^{10})\)
| $r_{ 8 }$ |
$=$ |
\( 4 a^{2} + 4 a + 43 + \left(39 a^{2} + 47 a + 56\right)\cdot 61 + \left(39 a^{2} + 38 a + 55\right)\cdot 61^{2} + \left(7 a^{2} + 51 a + 31\right)\cdot 61^{3} + \left(8 a^{2} + 9 a + 44\right)\cdot 61^{4} + \left(12 a^{2} + 6\right)\cdot 61^{5} + \left(8 a^{2} + a + 43\right)\cdot 61^{6} + \left(49 a^{2} + 43 a + 46\right)\cdot 61^{7} + \left(3 a^{2} + 28 a + 11\right)\cdot 61^{8} + \left(7 a^{2} + 12 a + 14\right)\cdot 61^{9} +O(61^{10})\)
| $r_{ 9 }$ |
$=$ |
\( 4 a^{2} + 9 a + 14 + \left(16 a^{2} + 40 a + 43\right)\cdot 61 + \left(9 a^{2} + 11 a + 10\right)\cdot 61^{2} + \left(43 a^{2} + 38 a + 1\right)\cdot 61^{3} + \left(27 a^{2} + 24 a + 50\right)\cdot 61^{4} + \left(44 a^{2} + 28 a + 35\right)\cdot 61^{5} + \left(15 a^{2} + 32 a + 28\right)\cdot 61^{6} + \left(42 a^{2} + 37 a + 25\right)\cdot 61^{7} + \left(2 a^{2} + 48 a + 57\right)\cdot 61^{8} + \left(55 a^{2} + 8 a + 42\right)\cdot 61^{9} +O(61^{10})\)
| |
Generators of the action on the roots $r_1, \ldots, r_{ 9 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 9 }$ | Character values |
$c1$ | |||
$1$ | $1$ | $()$ | $12$ |
$9$ | $2$ | $(1,5)$ | $4$ |
$18$ | $2$ | $(1,2)(5,7)(8,9)$ | $2$ |
$27$ | $2$ | $(1,5)(2,7)(3,4)$ | $0$ |
$27$ | $2$ | $(1,5)(2,7)$ | $0$ |
$54$ | $2$ | $(1,5)(2,3)(4,7)(6,8)$ | $2$ |
$6$ | $3$ | $(3,4,6)$ | $0$ |
$8$ | $3$ | $(1,5,9)(2,7,8)(3,4,6)$ | $3$ |
$12$ | $3$ | $(2,7,8)(3,4,6)$ | $-3$ |
$72$ | $3$ | $(1,2,3)(4,5,7)(6,9,8)$ | $0$ |
$54$ | $4$ | $(1,7,5,2)(8,9)$ | $0$ |
$162$ | $4$ | $(1,4,5,3)(6,9)(7,8)$ | $0$ |
$36$ | $6$ | $(1,2)(3,4,6)(5,7)(8,9)$ | $2$ |
$36$ | $6$ | $(1,3,5,4,9,6)$ | $-1$ |
$36$ | $6$ | $(1,5)(3,4,6)$ | $-2$ |
$36$ | $6$ | $(1,5)(2,7,8)(3,4,6)$ | $1$ |
$54$ | $6$ | $(1,5)(2,7)(3,6,4)$ | $0$ |
$72$ | $6$ | $(1,2,5,7,9,8)(3,4,6)$ | $-1$ |
$108$ | $6$ | $(1,5)(2,3,7,4,8,6)$ | $-1$ |
$216$ | $6$ | $(1,7,4,5,2,3)(6,9,8)$ | $0$ |
$144$ | $9$ | $(1,2,3,5,7,4,9,8,6)$ | $0$ |
$108$ | $12$ | $(1,7,5,2)(3,4,6)(8,9)$ | $0$ |