Properties

Label 12.258...624.18t315.a.a
Dimension $12$
Group $S_3\wr S_3$
Conductor $2.584\times 10^{16}$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $12$
Group: $S_3\wr S_3$
Conductor: \(25840385334170624\)\(\medspace = 2^{10} \cdot 7^{4} \cdot 101^{5} \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 9.3.186476238592.1
Galois orbit size: $1$
Smallest permutation container: 18T315
Parity: even
Determinant: 1.101.2t1.a.a
Projective image: $S_3\wr S_3$
Projective stem field: Galois closure of 9.3.186476238592.1

Defining polynomial

$f(x)$$=$ \( x^{9} - x^{8} - 4x^{7} + 2x^{6} + 2x^{5} + 2x^{4} - 18x^{3} + 28x^{2} - 27x + 9 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 79 }$ to precision 10.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 79 }$: \( x^{3} + 9x + 76 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 8 a^{2} + a + 62 + \left(19 a^{2} + 27 a + 77\right)\cdot 79 + \left(6 a^{2} + 70 a + 73\right)\cdot 79^{2} + \left(10 a^{2} + 21 a + 59\right)\cdot 79^{3} + \left(61 a^{2} + a + 76\right)\cdot 79^{4} + \left(27 a^{2} + 58 a + 31\right)\cdot 79^{5} + \left(12 a^{2} + 16 a + 38\right)\cdot 79^{6} + \left(73 a^{2} + 46 a + 39\right)\cdot 79^{7} + \left(49 a^{2} + 73 a + 55\right)\cdot 79^{8} + \left(a^{2} + 57 a + 1\right)\cdot 79^{9} +O(79^{10})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 77 a^{2} + 49 a + 2 + \left(71 a^{2} + 36 a\right)\cdot 79 + \left(30 a^{2} + 14 a + 64\right)\cdot 79^{2} + \left(33 a^{2} + 33 a + 41\right)\cdot 79^{3} + \left(13 a^{2} + 18 a + 27\right)\cdot 79^{4} + \left(24 a^{2} + 19 a + 10\right)\cdot 79^{5} + \left(7 a^{2} + 36 a + 8\right)\cdot 79^{6} + \left(76 a^{2} + 35 a + 57\right)\cdot 79^{7} + \left(57 a^{2} + 76 a + 24\right)\cdot 79^{8} + \left(74 a^{2} + 45 a + 45\right)\cdot 79^{9} +O(79^{10})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 21 a^{2} + 52 a + 46 + \left(32 a^{2} + 22 a + 39\right)\cdot 79 + \left(35 a^{2} + 45 a + 23\right)\cdot 79^{2} + \left(71 a^{2} + 13 a + 3\right)\cdot 79^{3} + \left(35 a^{2} + 67 a + 10\right)\cdot 79^{4} + \left(8 a^{2} + 24 a + 28\right)\cdot 79^{5} + \left(37 a^{2} + 72 a + 76\right)\cdot 79^{6} + \left(41 a^{2} + 14 a + 30\right)\cdot 79^{7} + \left(32 a^{2} + 19 a + 1\right)\cdot 79^{8} + \left(28 a^{2} + 19 a + 59\right)\cdot 79^{9} +O(79^{10})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 4 a^{2} + 7 a + 23 + \left(2 a^{2} + 29 a + 16\right)\cdot 79 + \left(76 a^{2} + 5 a + 30\right)\cdot 79^{2} + \left(21 a^{2} + 50 a + 22\right)\cdot 79^{3} + \left(66 a^{2} + 22 a + 34\right)\cdot 79^{4} + \left(38 a^{2} + 76 a + 52\right)\cdot 79^{5} + \left(34 a^{2} + 53 a + 60\right)\cdot 79^{6} + \left(77 a^{2} + 56 a + 9\right)\cdot 79^{7} + \left(69 a^{2} + 66 a + 68\right)\cdot 79^{8} + \left(69 a^{2} + 17 a + 70\right)\cdot 79^{9} +O(79^{10})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 54 a^{2} + 20 a + 7 + \left(44 a^{2} + 27 a + 35\right)\cdot 79 + \left(46 a^{2} + 28 a + 11\right)\cdot 79^{2} + \left(64 a^{2} + 15 a + 41\right)\cdot 79^{3} + \left(55 a^{2} + 68 a + 50\right)\cdot 79^{4} + \left(31 a^{2} + 56 a + 9\right)\cdot 79^{5} + \left(7 a^{2} + 31 a + 56\right)\cdot 79^{6} + \left(39 a^{2} + 7 a + 16\right)\cdot 79^{7} + \left(55 a^{2} + 72 a + 60\right)\cdot 79^{8} + \left(59 a^{2} + 41 a + 9\right)\cdot 79^{9} +O(79^{10})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 13 a^{2} + 61 a + 39 + \left(76 a^{2} + 29 a + 68\right)\cdot 79 + \left(52 a^{2} + 47 a + 48\right)\cdot 79^{2} + \left(6 a^{2} + 42 a + 44\right)\cdot 79^{3} + \left(68 a^{2} + 17 a + 8\right)\cdot 79^{4} + \left(45 a^{2} + 28 a + 11\right)\cdot 79^{5} + \left(10 a^{2} + 53 a + 61\right)\cdot 79^{6} + \left(69 a^{2} + 19 a + 57\right)\cdot 79^{7} + \left(67 a^{2} + 46 a + 28\right)\cdot 79^{8} + \left(67 a^{2} + 46 a + 26\right)\cdot 79^{9} +O(79^{10})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 73 a^{2} + 29 a + 57 + \left(66 a^{2} + 15 a + 48\right)\cdot 79 + \left(41 a^{2} + 73 a + 50\right)\cdot 79^{2} + \left(35 a^{2} + 23 a + 54\right)\cdot 79^{3} + \left(4 a^{2} + 59 a + 52\right)\cdot 79^{4} + \left(27 a^{2} + a + 27\right)\cdot 79^{5} + \left(59 a^{2} + 26 a + 4\right)\cdot 79^{6} + \left(8 a^{2} + 76 a + 48\right)\cdot 79^{7} + \left(50 a^{2} + 7 a + 56\right)\cdot 79^{8} + \left(2 a^{2} + 54 a + 7\right)\cdot 79^{9} +O(79^{10})\) Copy content Toggle raw display
$r_{ 8 }$ $=$ \( 43 a^{2} + 29 a + 61 + \left(15 a^{2} + 45 a + 20\right)\cdot 79 + \left(75 a^{2} + 24 a + 24\right)\cdot 79^{2} + \left(67 a^{2} + 73 a + 17\right)\cdot 79^{3} + \left(19 a^{2} + 54 a + 35\right)\cdot 79^{4} + \left(65 a^{2} + 70 a + 48\right)\cdot 79^{5} + \left(58 a^{2} + 77 a + 34\right)\cdot 79^{6} + \left(a^{2} + 25 a + 48\right)\cdot 79^{7} + \left(65 a^{2} + 31 a + 11\right)\cdot 79^{8} + \left(30 a^{2} + 41\right)\cdot 79^{9} +O(79^{10})\) Copy content Toggle raw display
$r_{ 9 }$ $=$ \( 23 a^{2} + 68 a + 20 + \left(66 a^{2} + 3 a + 9\right)\cdot 79 + \left(29 a^{2} + 7 a + 68\right)\cdot 79^{2} + \left(4 a^{2} + 42 a + 30\right)\cdot 79^{3} + \left(70 a^{2} + 6 a + 20\right)\cdot 79^{4} + \left(46 a^{2} + 59 a + 17\right)\cdot 79^{5} + \left(9 a^{2} + 26 a + 55\right)\cdot 79^{6} + \left(8 a^{2} + 33 a + 7\right)\cdot 79^{7} + \left(25 a^{2} + a + 9\right)\cdot 79^{8} + \left(59 a^{2} + 32 a + 54\right)\cdot 79^{9} +O(79^{10})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,5,2)(3,4,7)(6,8,9)$
$(1,4,6)$
$(1,5)(4,7)(6,8)$
$(2,3,9)$
$(5,7,8)$
$(1,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character value
$1$$1$$()$$12$
$9$$2$$(1,4)$$4$
$18$$2$$(1,5)(4,7)(6,8)$$2$
$27$$2$$(1,4)(2,3)(5,7)$$0$
$27$$2$$(1,4)(5,7)$$0$
$54$$2$$(1,4)(2,5)(3,7)(8,9)$$2$
$6$$3$$(2,3,9)$$0$
$8$$3$$(1,4,6)(2,3,9)(5,7,8)$$3$
$12$$3$$(1,4,6)(2,3,9)$$-3$
$72$$3$$(1,5,2)(3,4,7)(6,8,9)$$0$
$54$$4$$(1,7,4,5)(6,8)$$0$
$162$$4$$(1,3,4,2)(6,9)(7,8)$$0$
$36$$6$$(1,5)(2,3,9)(4,7)(6,8)$$2$
$36$$6$$(1,2,4,3,6,9)$$-1$
$36$$6$$(1,4)(2,3,9)$$-2$
$36$$6$$(1,4)(2,3,9)(5,7,8)$$1$
$54$$6$$(1,4)(2,9,3)(5,7)$$0$
$72$$6$$(1,5,4,7,6,8)(2,3,9)$$-1$
$108$$6$$(1,4)(2,7,3,8,9,5)$$-1$
$216$$6$$(1,7,3,4,5,2)(6,8,9)$$0$
$144$$9$$(1,5,2,4,7,3,6,8,9)$$0$
$108$$12$$(1,7,4,5)(2,3,9)(6,8)$$0$

The blue line marks the conjugacy class containing complex conjugation.