Basic invariants
Dimension: | $12$ |
Group: | $S_3\wr S_3$ |
Conductor: | \(253201009589661019\)\(\medspace = 47^{4} \cdot 139^{5} \) |
Frobenius-Schur indicator: | $1$ |
Root number: | $1$ |
Artin stem field: | Galois closure of 9.3.17545148927.1 |
Galois orbit size: | $1$ |
Smallest permutation container: | 18T315 |
Parity: | odd |
Determinant: | 1.139.2t1.a.a |
Projective image: | $S_3\wr S_3$ |
Projective stem field: | Galois closure of 9.3.17545148927.1 |
Defining polynomial
$f(x)$ | $=$ |
\( x^{9} - 2x^{8} - 5x^{7} + 10x^{6} + 9x^{5} - 19x^{4} - 6x^{3} + 17x^{2} + 2x - 4 \)
|
The roots of $f$ are computed in an extension of $\Q_{ 83 }$ to precision 10.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 83 }$:
\( x^{3} + 3x + 81 \)
Roots:
$r_{ 1 }$ | $=$ |
\( 22 a^{2} + 35 a + 3 + \left(24 a^{2} + 36 a + 16\right)\cdot 83 + \left(61 a^{2} + 70 a + 24\right)\cdot 83^{2} + \left(17 a^{2} + 27 a + 64\right)\cdot 83^{3} + \left(36 a^{2} + 56 a + 35\right)\cdot 83^{4} + \left(26 a^{2} + 7 a + 9\right)\cdot 83^{5} + \left(24 a^{2} + 66 a + 10\right)\cdot 83^{6} + \left(77 a^{2} + 23 a + 5\right)\cdot 83^{7} + \left(10 a^{2} + 16 a + 42\right)\cdot 83^{8} + \left(74 a^{2} + 79 a + 12\right)\cdot 83^{9} +O(83^{10})\)
$r_{ 2 }$ |
$=$ |
\( 71 a^{2} + 45 a + 18 + \left(68 a^{2} + 11 a + 14\right)\cdot 83 + \left(72 a^{2} + 31 a + 63\right)\cdot 83^{2} + \left(14 a^{2} + 9 a + 61\right)\cdot 83^{3} + \left(53 a^{2} + 26 a + 30\right)\cdot 83^{4} + \left(67 a^{2} + 18 a + 22\right)\cdot 83^{5} + \left(80 a^{2} + 60 a + 19\right)\cdot 83^{6} + \left(79 a^{2} + 32 a + 4\right)\cdot 83^{7} + \left(6 a^{2} + 58 a + 51\right)\cdot 83^{8} + \left(82 a^{2} + 20 a + 52\right)\cdot 83^{9} +O(83^{10})\)
| $r_{ 3 }$ |
$=$ |
\( 3 a^{2} + 79 a + 48 + \left(46 a^{2} + 79 a + 59\right)\cdot 83 + \left(35 a^{2} + 64 a + 55\right)\cdot 83^{2} + \left(23 a^{2} + 53 a + 75\right)\cdot 83^{3} + \left(11 a^{2} + 59 a + 68\right)\cdot 83^{4} + \left(75 a^{2} + 4 a + 23\right)\cdot 83^{5} + \left(25 a^{2} + 4 a + 13\right)\cdot 83^{6} + \left(23 a^{2} + 45 a + 63\right)\cdot 83^{7} + \left(6 a^{2} + 66 a + 32\right)\cdot 83^{8} + \left(43 a^{2} + 59 a + 33\right)\cdot 83^{9} +O(83^{10})\)
| $r_{ 4 }$ |
$=$ |
\( 75 a^{2} + 78 a + 39 + \left(20 a^{2} + 19 a + 59\right)\cdot 83 + \left(47 a^{2} + 16 a + 81\right)\cdot 83^{2} + \left(78 a^{2} + 76 a + 40\right)\cdot 83^{3} + \left(78 a^{2} + 29 a + 76\right)\cdot 83^{4} + \left(69 a^{2} + 5 a + 74\right)\cdot 83^{5} + \left(81 a^{2} + 36 a + 67\right)\cdot 83^{6} + \left(42 a^{2} + 9 a + 3\right)\cdot 83^{7} + \left(11 a^{2} + 68 a + 21\right)\cdot 83^{8} + \left(30 a^{2} + 57 a + 3\right)\cdot 83^{9} +O(83^{10})\)
| $r_{ 5 }$ |
$=$ |
\( 20 a^{2} + 30 a + 12 + \left(68 a^{2} + 51 a + 71\right)\cdot 83 + \left(75 a^{2} + 43 a + 55\right)\cdot 83^{2} + \left(63 a^{2} + 58 a + 11\right)\cdot 83^{3} + \left(14 a^{2} + 63 a + 31\right)\cdot 83^{4} + \left(63 a^{2} + 56 a + 61\right)\cdot 83^{5} + \left(5 a^{2} + 40 a + 81\right)\cdot 83^{6} + \left(9 a^{2} + 81 a + 18\right)\cdot 83^{7} + \left(2 a^{2} + 12 a + 2\right)\cdot 83^{8} + \left(16 a^{2} + 55 a + 58\right)\cdot 83^{9} +O(83^{10})\)
| $r_{ 6 }$ |
$=$ |
\( 34 a^{2} + 9 a + 27 + \left(20 a^{2} + 64 a\right)\cdot 83 + \left(70 a^{2} + 29 a + 58\right)\cdot 83^{2} + \left(53 a^{2} + 37 a + 56\right)\cdot 83^{3} + \left(22 a^{2} + 30 a + 52\right)\cdot 83^{4} + \left(26 a^{2} + 69 a + 22\right)\cdot 83^{5} + \left(24 a^{2} + 16 a + 72\right)\cdot 83^{6} + \left(21 a^{2} + 46 a + 52\right)\cdot 83^{7} + \left(31 a^{2} + 40 a + 16\right)\cdot 83^{8} + \left(25 a^{2} + 77 a + 22\right)\cdot 83^{9} +O(83^{10})\)
| $r_{ 7 }$ |
$=$ |
\( 58 a^{2} + 52 a + 75 + \left(12 a^{2} + 49 a + 75\right)\cdot 83 + \left(69 a^{2} + 30 a + 39\right)\cdot 83^{2} + \left(41 a^{2} + a + 29\right)\cdot 83^{3} + \left(35 a^{2} + 50 a + 34\right)\cdot 83^{4} + \left(64 a^{2} + 70 a + 2\right)\cdot 83^{5} + \left(32 a^{2} + 12 a + 27\right)\cdot 83^{6} + \left(65 a^{2} + 14 a + 64\right)\cdot 83^{7} + \left(65 a^{2} + 68\right)\cdot 83^{8} + \left(48 a^{2} + 27 a + 44\right)\cdot 83^{9} +O(83^{10})\)
| $r_{ 8 }$ |
$=$ |
\( 61 a^{2} + 29 a + 81 + \left(76 a^{2} + 7 a + 29\right)\cdot 83 + \left(22 a^{2} + 22 a + 46\right)\cdot 83^{2} + \left(14 a^{2} + 36 a + 60\right)\cdot 83^{3} + \left(7 a^{2} + 26 a + 21\right)\cdot 83^{4} + \left(72 a^{2} + 78 a + 31\right)\cdot 83^{5} + \left(60 a^{2} + 5 a + 62\right)\cdot 83^{6} + \left(64 a^{2} + 4 a + 56\right)\cdot 83^{7} + \left(44 a^{2} + 67 a + 43\right)\cdot 83^{8} + \left(58 a^{2} + 67 a + 5\right)\cdot 83^{9} +O(83^{10})\)
| $r_{ 9 }$ |
$=$ |
\( 71 a^{2} + 58 a + 31 + \left(76 a^{2} + 11 a + 5\right)\cdot 83 + \left(42 a^{2} + 23 a + 73\right)\cdot 83^{2} + \left(23 a^{2} + 31 a + 13\right)\cdot 83^{3} + \left(72 a^{2} + 72 a + 63\right)\cdot 83^{4} + \left(32 a^{2} + 20 a\right)\cdot 83^{5} + \left(78 a^{2} + 6 a + 61\right)\cdot 83^{6} + \left(30 a^{2} + 75 a + 62\right)\cdot 83^{7} + \left(69 a^{2} + a + 53\right)\cdot 83^{8} + \left(36 a^{2} + 53 a + 16\right)\cdot 83^{9} +O(83^{10})\)
| |
Generators of the action on the roots $r_1, \ldots, r_{ 9 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 9 }$ | Character value |
$1$ | $1$ | $()$ | $12$ |
$9$ | $2$ | $(2,3)$ | $4$ |
$18$ | $2$ | $(1,2)(3,6)(4,9)$ | $2$ |
$27$ | $2$ | $(1,6)(2,3)(5,7)$ | $0$ |
$27$ | $2$ | $(1,6)(2,3)$ | $0$ |
$54$ | $2$ | $(1,5)(2,3)(6,7)(8,9)$ | $2$ |
$6$ | $3$ | $(5,7,8)$ | $0$ |
$8$ | $3$ | $(1,6,9)(2,3,4)(5,7,8)$ | $3$ |
$12$ | $3$ | $(2,3,4)(5,7,8)$ | $-3$ |
$72$ | $3$ | $(1,5,2)(3,6,7)(4,9,8)$ | $0$ |
$54$ | $4$ | $(1,2,6,3)(4,9)$ | $0$ |
$162$ | $4$ | $(2,7,3,5)(4,8)(6,9)$ | $0$ |
$36$ | $6$ | $(1,2)(3,6)(4,9)(5,7,8)$ | $2$ |
$36$ | $6$ | $(2,5,3,7,4,8)$ | $-1$ |
$36$ | $6$ | $(2,3)(5,7,8)$ | $-2$ |
$36$ | $6$ | $(1,6,9)(2,3)(5,7,8)$ | $1$ |
$54$ | $6$ | $(1,6)(2,3)(5,8,7)$ | $0$ |
$72$ | $6$ | $(1,3,6,4,9,2)(5,7,8)$ | $-1$ |
$108$ | $6$ | $(1,5,6,7,9,8)(2,3)$ | $-1$ |
$216$ | $6$ | $(1,5,2,6,7,3)(4,9,8)$ | $0$ |
$144$ | $9$ | $(1,5,3,6,7,4,9,8,2)$ | $0$ |
$108$ | $12$ | $(1,2,6,3)(4,9)(5,7,8)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.