Basic invariants
Dimension: | $12$ |
Group: | $S_3\wr S_3$ |
Conductor: | \(192144982721347584\)\(\medspace = 2^{14} \cdot 3^{5} \cdot 137^{5} \) |
Frobenius-Schur indicator: | $1$ |
Root number: | $1$ |
Artin stem field: | Galois closure of 9.1.152182955952.1 |
Galois orbit size: | $1$ |
Smallest permutation container: | 18T315 |
Parity: | odd |
Determinant: | 1.411.2t1.a.a |
Projective image: | $S_3\wr S_3$ |
Projective stem field: | Galois closure of 9.1.152182955952.1 |
Defining polynomial
$f(x)$ | $=$ |
\( x^{9} - 4x^{8} + 3x^{7} + 3x^{6} + 2x^{5} - 4x^{4} - 5x^{3} + 2x^{2} + 3x + 3 \)
|
The roots of $f$ are computed in an extension of $\Q_{ 61 }$ to precision 10.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 61 }$:
\( x^{3} + 7x + 59 \)
Roots:
$r_{ 1 }$ | $=$ |
\( 10 a^{2} + 8 a + 35 + \left(10 a^{2} + 2 a + 53\right)\cdot 61 + \left(22 a^{2} + 56 a + 7\right)\cdot 61^{2} + \left(40 a^{2} + 56 a + 48\right)\cdot 61^{3} + \left(54 a^{2} + 14 a + 52\right)\cdot 61^{4} + \left(a^{2} + 17 a + 45\right)\cdot 61^{5} + \left(13 a^{2} + 34 a + 4\right)\cdot 61^{6} + \left(7 a^{2} + 19 a + 60\right)\cdot 61^{7} + \left(48 a^{2} + 48 a + 56\right)\cdot 61^{8} + \left(17 a^{2} + 19\right)\cdot 61^{9} +O(61^{10})\)
$r_{ 2 }$ |
$=$ |
\( 14 a^{2} + 49 a + 21 + \left(44 a^{2} + 43 a + 29\right)\cdot 61 + \left(49 a^{2} + 27 a + 51\right)\cdot 61^{2} + \left(7 a^{2} + 5 a + 53\right)\cdot 61^{3} + \left(30 a^{2} + 18 a + 56\right)\cdot 61^{4} + \left(9 a^{2} + 57 a\right)\cdot 61^{5} + \left(17 a^{2} + 7 a + 14\right)\cdot 61^{6} + \left(52 a^{2} + 22 a + 55\right)\cdot 61^{7} + \left(40 a^{2} + 27 a + 14\right)\cdot 61^{8} + \left(16 a^{2} + 2 a + 26\right)\cdot 61^{9} +O(61^{10})\)
| $r_{ 3 }$ |
$=$ |
\( 57 a^{2} + 47 a + 51 + \left(31 a^{2} + 50 a + 12\right)\cdot 61 + \left(23 a^{2} + 23 a + 14\right)\cdot 61^{2} + \left(55 a^{2} + 22 a + 57\right)\cdot 61^{3} + \left(60 a^{2} + 4 a + 20\right)\cdot 61^{4} + \left(60 a^{2} + 2 a + 57\right)\cdot 61^{5} + \left(59 a^{2} + 7 a + 40\right)\cdot 61^{6} + \left(5 a^{2} + 7 a + 13\right)\cdot 61^{7} + \left(2 a^{2} + 28 a + 25\right)\cdot 61^{8} + \left(47 a^{2} + 46 a + 34\right)\cdot 61^{9} +O(61^{10})\)
| $r_{ 4 }$ |
$=$ |
\( 20 a^{2} + 22 a + 49 + \left(31 a^{2} + 19 a + 52\right)\cdot 61 + \left(57 a^{2} + 46 a + 15\right)\cdot 61^{2} + \left(16 a^{2} + 44 a + 39\right)\cdot 61^{3} + \left(35 a^{2} + 49 a + 23\right)\cdot 61^{4} + \left(52 a^{2} + 51 a + 48\right)\cdot 61^{5} + \left(34 a^{2} + 39 a + 40\right)\cdot 61^{6} + \left(55 a^{2} + 8 a + 55\right)\cdot 61^{7} + \left(32 a^{2} + 44 a + 8\right)\cdot 61^{8} + \left(13 a^{2} + 18 a + 15\right)\cdot 61^{9} +O(61^{10})\)
| $r_{ 5 }$ |
$=$ |
\( 26 a^{2} + 33 a + 16 + \left(52 a^{2} + 58 a + 47\right)\cdot 61 + \left(21 a^{2} + 28 a + 2\right)\cdot 61^{2} + \left(46 a^{2} + 28 a + 10\right)\cdot 61^{3} + \left(55 a^{2} + 17 a + 34\right)\cdot 61^{4} + \left(48 a^{2} + 27 a + 42\right)\cdot 61^{5} + \left(19 a^{2} + 21 a + 46\right)\cdot 61^{6} + \left(6 a^{2} + 60 a + 23\right)\cdot 61^{7} + \left(58 a^{2} + 25 a + 34\right)\cdot 61^{8} + \left(27 a^{2} + 32 a + 58\right)\cdot 61^{9} +O(61^{10})\)
| $r_{ 6 }$ |
$=$ |
\( 55 a^{2} + 6 a + 1 + \left(18 a^{2} + 8 a + 13\right)\cdot 61 + \left(15 a^{2} + 42 a + 57\right)\cdot 61^{2} + \left(26 a^{2} + 42 a + 22\right)\cdot 61^{3} + \left(6 a^{2} + 41 a + 51\right)\cdot 61^{4} + \left(59 a^{2} + 41 a + 7\right)\cdot 61^{5} + \left(48 a^{2} + 19 a + 30\right)\cdot 61^{6} + \left(47 a^{2} + 34 a + 5\right)\cdot 61^{7} + \left(10 a^{2} + 45 a + 25\right)\cdot 61^{8} + \left(57 a^{2} + 13 a\right)\cdot 61^{9} +O(61^{10})\)
| $r_{ 7 }$ |
$=$ |
\( 3 a^{2} + 26 a + 51 + \left(4 a^{2} + 46 a + 6\right)\cdot 61 + \left(8 a^{2} + 56 a + 29\right)\cdot 61^{2} + \left(8 a^{2} + a + 18\right)\cdot 61^{3} + \left(43 a^{2} + 49 a + 60\right)\cdot 61^{4} + \left(42 a^{2} + 11 a + 42\right)\cdot 61^{5} + \left(54 a^{2} + 41 a + 31\right)\cdot 61^{6} + \left(24 a^{2} + 17 a + 34\right)\cdot 61^{7} + \left(46 a^{2} + 56 a + 51\right)\cdot 61^{8} + \left(30 a^{2} + 7 a + 54\right)\cdot 61^{9} +O(61^{10})\)
| $r_{ 8 }$ |
$=$ |
\( 21 a^{2} + 40 a + 13 + \left(25 a^{2} + 19 a + 2\right)\cdot 61 + \left(50 a^{2} + 4 a + 14\right)\cdot 61^{2} + \left(6 a^{2} + 27 a + 49\right)\cdot 61^{3} + \left(36 a^{2} + 25 a + 23\right)\cdot 61^{4} + \left(2 a^{2} + 37 a + 9\right)\cdot 61^{5} + \left(24 a^{2} + 31 a + 46\right)\cdot 61^{6} + \left(2 a^{2} + 39 a + 25\right)\cdot 61^{7} + \left(23 a^{2} + 7 a + 33\right)\cdot 61^{8} + \left(16 a^{2} + 26 a + 4\right)\cdot 61^{9} +O(61^{10})\)
| $r_{ 9 }$ |
$=$ |
\( 38 a^{2} + 13 a + 11 + \left(25 a^{2} + 56 a + 26\right)\cdot 61 + \left(56 a^{2} + 18 a + 51\right)\cdot 61^{2} + \left(35 a^{2} + 14 a + 5\right)\cdot 61^{3} + \left(43 a^{2} + 23 a + 42\right)\cdot 61^{4} + \left(26 a^{2} + 58 a + 49\right)\cdot 61^{5} + \left(32 a^{2} + 40 a + 49\right)\cdot 61^{6} + \left(41 a^{2} + 34 a + 30\right)\cdot 61^{7} + \left(42 a^{2} + 21 a + 54\right)\cdot 61^{8} + \left(16 a^{2} + 34 a + 29\right)\cdot 61^{9} +O(61^{10})\)
| |
Generators of the action on the roots $r_1, \ldots, r_{ 9 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 9 }$ | Character value |
$1$ | $1$ | $()$ | $12$ |
$9$ | $2$ | $(3,7)$ | $4$ |
$18$ | $2$ | $(1,3)(2,7)(4,8)$ | $2$ |
$27$ | $2$ | $(1,2)(3,7)(5,6)$ | $0$ |
$27$ | $2$ | $(3,7)(5,6)$ | $0$ |
$54$ | $2$ | $(1,5)(2,6)(3,7)(4,9)$ | $2$ |
$6$ | $3$ | $(5,6,9)$ | $0$ |
$8$ | $3$ | $(1,4,2)(3,8,7)(5,9,6)$ | $3$ |
$12$ | $3$ | $(1,2,4)(5,6,9)$ | $-3$ |
$72$ | $3$ | $(1,5,3)(2,6,7)(4,9,8)$ | $0$ |
$54$ | $4$ | $(3,5,7,6)(8,9)$ | $0$ |
$162$ | $4$ | $(2,4)(3,5,7,6)(8,9)$ | $0$ |
$36$ | $6$ | $(1,3)(2,7)(4,8)(5,6,9)$ | $2$ |
$36$ | $6$ | $(3,5,8,9,7,6)$ | $-1$ |
$36$ | $6$ | $(3,7)(5,6,9)$ | $-2$ |
$36$ | $6$ | $(1,2,4)(3,7)(5,6,9)$ | $1$ |
$54$ | $6$ | $(1,4,2)(3,7)(5,6)$ | $0$ |
$72$ | $6$ | $(1,7,2,8,4,3)(5,6,9)$ | $-1$ |
$108$ | $6$ | $(1,5,2,6,4,9)(3,7)$ | $-1$ |
$216$ | $6$ | $(1,5,7,2,6,3)(4,9,8)$ | $0$ |
$144$ | $9$ | $(1,5,8,4,9,7,2,6,3)$ | $0$ |
$108$ | $12$ | $(1,2,4)(3,5,7,6)(8,9)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.