Properties

Label 12.192...584.18t315.a.a
Dimension $12$
Group $S_3\wr S_3$
Conductor $1.921\times 10^{17}$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $12$
Group: $S_3\wr S_3$
Conductor: \(192144982721347584\)\(\medspace = 2^{14} \cdot 3^{5} \cdot 137^{5} \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 9.1.152182955952.1
Galois orbit size: $1$
Smallest permutation container: 18T315
Parity: odd
Determinant: 1.411.2t1.a.a
Projective image: $S_3\wr S_3$
Projective stem field: Galois closure of 9.1.152182955952.1

Defining polynomial

$f(x)$$=$ \( x^{9} - 4x^{8} + 3x^{7} + 3x^{6} + 2x^{5} - 4x^{4} - 5x^{3} + 2x^{2} + 3x + 3 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 61 }$ to precision 10.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 61 }$: \( x^{3} + 7x + 59 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 10 a^{2} + 8 a + 35 + \left(10 a^{2} + 2 a + 53\right)\cdot 61 + \left(22 a^{2} + 56 a + 7\right)\cdot 61^{2} + \left(40 a^{2} + 56 a + 48\right)\cdot 61^{3} + \left(54 a^{2} + 14 a + 52\right)\cdot 61^{4} + \left(a^{2} + 17 a + 45\right)\cdot 61^{5} + \left(13 a^{2} + 34 a + 4\right)\cdot 61^{6} + \left(7 a^{2} + 19 a + 60\right)\cdot 61^{7} + \left(48 a^{2} + 48 a + 56\right)\cdot 61^{8} + \left(17 a^{2} + 19\right)\cdot 61^{9} +O(61^{10})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 14 a^{2} + 49 a + 21 + \left(44 a^{2} + 43 a + 29\right)\cdot 61 + \left(49 a^{2} + 27 a + 51\right)\cdot 61^{2} + \left(7 a^{2} + 5 a + 53\right)\cdot 61^{3} + \left(30 a^{2} + 18 a + 56\right)\cdot 61^{4} + \left(9 a^{2} + 57 a\right)\cdot 61^{5} + \left(17 a^{2} + 7 a + 14\right)\cdot 61^{6} + \left(52 a^{2} + 22 a + 55\right)\cdot 61^{7} + \left(40 a^{2} + 27 a + 14\right)\cdot 61^{8} + \left(16 a^{2} + 2 a + 26\right)\cdot 61^{9} +O(61^{10})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 57 a^{2} + 47 a + 51 + \left(31 a^{2} + 50 a + 12\right)\cdot 61 + \left(23 a^{2} + 23 a + 14\right)\cdot 61^{2} + \left(55 a^{2} + 22 a + 57\right)\cdot 61^{3} + \left(60 a^{2} + 4 a + 20\right)\cdot 61^{4} + \left(60 a^{2} + 2 a + 57\right)\cdot 61^{5} + \left(59 a^{2} + 7 a + 40\right)\cdot 61^{6} + \left(5 a^{2} + 7 a + 13\right)\cdot 61^{7} + \left(2 a^{2} + 28 a + 25\right)\cdot 61^{8} + \left(47 a^{2} + 46 a + 34\right)\cdot 61^{9} +O(61^{10})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 20 a^{2} + 22 a + 49 + \left(31 a^{2} + 19 a + 52\right)\cdot 61 + \left(57 a^{2} + 46 a + 15\right)\cdot 61^{2} + \left(16 a^{2} + 44 a + 39\right)\cdot 61^{3} + \left(35 a^{2} + 49 a + 23\right)\cdot 61^{4} + \left(52 a^{2} + 51 a + 48\right)\cdot 61^{5} + \left(34 a^{2} + 39 a + 40\right)\cdot 61^{6} + \left(55 a^{2} + 8 a + 55\right)\cdot 61^{7} + \left(32 a^{2} + 44 a + 8\right)\cdot 61^{8} + \left(13 a^{2} + 18 a + 15\right)\cdot 61^{9} +O(61^{10})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 26 a^{2} + 33 a + 16 + \left(52 a^{2} + 58 a + 47\right)\cdot 61 + \left(21 a^{2} + 28 a + 2\right)\cdot 61^{2} + \left(46 a^{2} + 28 a + 10\right)\cdot 61^{3} + \left(55 a^{2} + 17 a + 34\right)\cdot 61^{4} + \left(48 a^{2} + 27 a + 42\right)\cdot 61^{5} + \left(19 a^{2} + 21 a + 46\right)\cdot 61^{6} + \left(6 a^{2} + 60 a + 23\right)\cdot 61^{7} + \left(58 a^{2} + 25 a + 34\right)\cdot 61^{8} + \left(27 a^{2} + 32 a + 58\right)\cdot 61^{9} +O(61^{10})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 55 a^{2} + 6 a + 1 + \left(18 a^{2} + 8 a + 13\right)\cdot 61 + \left(15 a^{2} + 42 a + 57\right)\cdot 61^{2} + \left(26 a^{2} + 42 a + 22\right)\cdot 61^{3} + \left(6 a^{2} + 41 a + 51\right)\cdot 61^{4} + \left(59 a^{2} + 41 a + 7\right)\cdot 61^{5} + \left(48 a^{2} + 19 a + 30\right)\cdot 61^{6} + \left(47 a^{2} + 34 a + 5\right)\cdot 61^{7} + \left(10 a^{2} + 45 a + 25\right)\cdot 61^{8} + \left(57 a^{2} + 13 a\right)\cdot 61^{9} +O(61^{10})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 3 a^{2} + 26 a + 51 + \left(4 a^{2} + 46 a + 6\right)\cdot 61 + \left(8 a^{2} + 56 a + 29\right)\cdot 61^{2} + \left(8 a^{2} + a + 18\right)\cdot 61^{3} + \left(43 a^{2} + 49 a + 60\right)\cdot 61^{4} + \left(42 a^{2} + 11 a + 42\right)\cdot 61^{5} + \left(54 a^{2} + 41 a + 31\right)\cdot 61^{6} + \left(24 a^{2} + 17 a + 34\right)\cdot 61^{7} + \left(46 a^{2} + 56 a + 51\right)\cdot 61^{8} + \left(30 a^{2} + 7 a + 54\right)\cdot 61^{9} +O(61^{10})\) Copy content Toggle raw display
$r_{ 8 }$ $=$ \( 21 a^{2} + 40 a + 13 + \left(25 a^{2} + 19 a + 2\right)\cdot 61 + \left(50 a^{2} + 4 a + 14\right)\cdot 61^{2} + \left(6 a^{2} + 27 a + 49\right)\cdot 61^{3} + \left(36 a^{2} + 25 a + 23\right)\cdot 61^{4} + \left(2 a^{2} + 37 a + 9\right)\cdot 61^{5} + \left(24 a^{2} + 31 a + 46\right)\cdot 61^{6} + \left(2 a^{2} + 39 a + 25\right)\cdot 61^{7} + \left(23 a^{2} + 7 a + 33\right)\cdot 61^{8} + \left(16 a^{2} + 26 a + 4\right)\cdot 61^{9} +O(61^{10})\) Copy content Toggle raw display
$r_{ 9 }$ $=$ \( 38 a^{2} + 13 a + 11 + \left(25 a^{2} + 56 a + 26\right)\cdot 61 + \left(56 a^{2} + 18 a + 51\right)\cdot 61^{2} + \left(35 a^{2} + 14 a + 5\right)\cdot 61^{3} + \left(43 a^{2} + 23 a + 42\right)\cdot 61^{4} + \left(26 a^{2} + 58 a + 49\right)\cdot 61^{5} + \left(32 a^{2} + 40 a + 49\right)\cdot 61^{6} + \left(41 a^{2} + 34 a + 30\right)\cdot 61^{7} + \left(42 a^{2} + 21 a + 54\right)\cdot 61^{8} + \left(16 a^{2} + 34 a + 29\right)\cdot 61^{9} +O(61^{10})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(3,7)$
$(1,5,3)(2,6,7)(4,9,8)$
$(1,2,4)$
$(3,7,8)$
$(5,6,9)$
$(1,3)(2,7)(4,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character value
$1$$1$$()$$12$
$9$$2$$(3,7)$$4$
$18$$2$$(1,3)(2,7)(4,8)$$2$
$27$$2$$(1,2)(3,7)(5,6)$$0$
$27$$2$$(3,7)(5,6)$$0$
$54$$2$$(1,5)(2,6)(3,7)(4,9)$$2$
$6$$3$$(5,6,9)$$0$
$8$$3$$(1,4,2)(3,8,7)(5,9,6)$$3$
$12$$3$$(1,2,4)(5,6,9)$$-3$
$72$$3$$(1,5,3)(2,6,7)(4,9,8)$$0$
$54$$4$$(3,5,7,6)(8,9)$$0$
$162$$4$$(2,4)(3,5,7,6)(8,9)$$0$
$36$$6$$(1,3)(2,7)(4,8)(5,6,9)$$2$
$36$$6$$(3,5,8,9,7,6)$$-1$
$36$$6$$(3,7)(5,6,9)$$-2$
$36$$6$$(1,2,4)(3,7)(5,6,9)$$1$
$54$$6$$(1,4,2)(3,7)(5,6)$$0$
$72$$6$$(1,7,2,8,4,3)(5,6,9)$$-1$
$108$$6$$(1,5,2,6,4,9)(3,7)$$-1$
$216$$6$$(1,5,7,2,6,3)(4,9,8)$$0$
$144$$9$$(1,5,8,4,9,7,2,6,3)$$0$
$108$$12$$(1,2,4)(3,5,7,6)(8,9)$$0$

The blue line marks the conjugacy class containing complex conjugation.