Basic invariants
Dimension: | $12$ |
Group: | $(((C_3 \times (C_3^2 : C_2)) : C_2) : C_3) : C_2$ |
Conductor: | \(123218946725049099\)\(\medspace = 3^{15} \cdot 97^{5} \) |
Frobenius-Schur indicator: | $1$ |
Root number: | $1$ |
Artin stem field: | Galois closure of 9.1.47048089623921.1 |
Galois orbit size: | $1$ |
Smallest permutation container: | 18T218 |
Parity: | odd |
Determinant: | 1.291.2t1.a.a |
Projective image: | $C_3^3:S_4$ |
Projective stem field: | Galois closure of 9.1.47048089623921.1 |
Defining polynomial
$f(x)$ | $=$ |
\( x^{9} - 24x^{6} + 48x^{5} - 135x^{4} + 249x^{3} - 42x^{2} + 108x - 161 \)
|
The roots of $f$ are computed in an extension of $\Q_{ 59 }$ to precision 10.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 59 }$:
\( x^{3} + 5x + 57 \)
Roots:
$r_{ 1 }$ | $=$ |
\( 15 a^{2} + 10 a + 50 + \left(55 a^{2} + 9 a + 26\right)\cdot 59 + \left(53 a^{2} + 56 a + 22\right)\cdot 59^{2} + \left(12 a^{2} + 37 a + 23\right)\cdot 59^{3} + \left(a^{2} + 54 a + 43\right)\cdot 59^{4} + \left(8 a^{2} + 37 a + 26\right)\cdot 59^{5} + \left(46 a^{2} + 16 a + 55\right)\cdot 59^{6} + \left(22 a^{2} + 25 a + 16\right)\cdot 59^{7} + \left(51 a^{2} + 42 a + 53\right)\cdot 59^{8} + \left(45 a^{2} + 31 a + 34\right)\cdot 59^{9} +O(59^{10})\)
$r_{ 2 }$ |
$=$ |
\( 53 a^{2} + 12 a + 39 + \left(20 a^{2} + 31 a + 10\right)\cdot 59 + \left(17 a^{2} + 8 a + 38\right)\cdot 59^{2} + \left(16 a^{2} + 58 a + 34\right)\cdot 59^{3} + \left(6 a^{2} + 58 a + 40\right)\cdot 59^{4} + \left(13 a^{2} + 16 a + 43\right)\cdot 59^{5} + \left(21 a^{2} + 28 a + 11\right)\cdot 59^{6} + \left(40 a^{2} + 18 a + 36\right)\cdot 59^{7} + \left(22 a^{2} + 10 a + 16\right)\cdot 59^{8} + \left(43 a^{2} + 55 a + 46\right)\cdot 59^{9} +O(59^{10})\)
| $r_{ 3 }$ |
$=$ |
\( 24 a^{2} + 39 a + 21 + \left(28 a^{2} + 12 a + 55\right)\cdot 59 + \left(51 a^{2} + 36 a + 33\right)\cdot 59^{2} + \left(10 a^{2} + 43 a + 16\right)\cdot 59^{3} + \left(48 a^{2} + 10 a + 3\right)\cdot 59^{4} + \left(55 a^{2} + 56 a + 9\right)\cdot 59^{5} + \left(50 a^{2} + 45 a + 32\right)\cdot 59^{6} + \left(12 a^{2} + 49 a + 3\right)\cdot 59^{7} + \left(18 a^{2} + 41 a + 41\right)\cdot 59^{8} + \left(42 a^{2} + 39 a + 42\right)\cdot 59^{9} +O(59^{10})\)
| $r_{ 4 }$ |
$=$ |
\( 17 + 59 + 22\cdot 59^{2} + 21\cdot 59^{3} + 12\cdot 59^{4} + 38\cdot 59^{5} + 21\cdot 59^{6} + 18\cdot 59^{7} + 45\cdot 59^{8} + 46\cdot 59^{9} +O(59^{10})\)
| $r_{ 5 }$ |
$=$ |
\( 12 + 41\cdot 59 + 56\cdot 59^{2} + 6\cdot 59^{3} + 46\cdot 59^{4} + 29\cdot 59^{5} + 4\cdot 59^{6} + 49\cdot 59^{7} + 57\cdot 59^{8} + 41\cdot 59^{9} +O(59^{10})\)
| $r_{ 6 }$ |
$=$ |
\( 50 a^{2} + 37 a + 29 + \left(41 a^{2} + 18 a + 21\right)\cdot 59 + \left(46 a^{2} + 53 a + 57\right)\cdot 59^{2} + \left(29 a^{2} + 21 a\right)\cdot 59^{3} + \left(51 a^{2} + 4 a + 34\right)\cdot 59^{4} + \left(37 a^{2} + 4 a + 47\right)\cdot 59^{5} + \left(50 a^{2} + 14 a + 50\right)\cdot 59^{6} + \left(54 a^{2} + 15 a + 5\right)\cdot 59^{7} + \left(43 a^{2} + 6 a + 48\right)\cdot 59^{8} + \left(28 a^{2} + 31 a + 36\right)\cdot 59^{9} +O(59^{10})\)
| $r_{ 7 }$ |
$=$ |
\( 19 a^{2} + 52 a + 24 + \left(35 a^{2} + 31 a + 19\right)\cdot 59 + \left(32 a^{2} + 3 a + 10\right)\cdot 59^{2} + \left(22 a^{2} + 9 a + 16\right)\cdot 59^{3} + \left(27 a^{2} + 22 a + 32\right)\cdot 59^{4} + \left(47 a^{2} + 12 a + 20\right)\cdot 59^{5} + \left(6 a^{2} + a + 42\right)\cdot 59^{6} + \left(43 a^{2} + 50 a + 25\right)\cdot 59^{7} + \left(23 a^{2} + 42 a\right)\cdot 59^{8} + \left(24 a^{2} + 3 a + 42\right)\cdot 59^{9} +O(59^{10})\)
| $r_{ 8 }$ |
$=$ |
\( 16 a^{2} + 27 a + 14 + \left(54 a^{2} + 14 a + 43\right)\cdot 59 + \left(33 a^{2} + 19 a + 14\right)\cdot 59^{2} + \left(25 a^{2} + 6 a + 26\right)\cdot 59^{3} + \left(42 a^{2} + 26 a + 23\right)\cdot 59^{4} + \left(14 a^{2} + 49 a + 29\right)\cdot 59^{5} + \left(a^{2} + 11 a + 43\right)\cdot 59^{6} + \left(3 a^{2} + 18 a + 29\right)\cdot 59^{7} + \left(17 a^{2} + 33 a + 17\right)\cdot 59^{8} + \left(51 a^{2} + 15 a + 33\right)\cdot 59^{9} +O(59^{10})\)
| $r_{ 9 }$ |
$=$ |
\( 30 + 16\cdot 59 + 39\cdot 59^{2} + 30\cdot 59^{3} + 50\cdot 59^{5} + 32\cdot 59^{6} + 50\cdot 59^{7} + 14\cdot 59^{8} + 29\cdot 59^{9} +O(59^{10})\)
| |
Generators of the action on the roots $r_1, \ldots, r_{ 9 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 9 }$ | Character value |
$1$ | $1$ | $()$ | $12$ |
$27$ | $2$ | $(1,2)(4,5)$ | $0$ |
$54$ | $2$ | $(1,4)(2,5)(3,7)(6,9)$ | $2$ |
$6$ | $3$ | $(1,2,6)$ | $0$ |
$8$ | $3$ | $(1,2,6)(3,7,8)(4,5,9)$ | $3$ |
$12$ | $3$ | $(1,2,6)(3,7,8)$ | $-3$ |
$72$ | $3$ | $(1,3,4)(2,7,5)(6,8,9)$ | $0$ |
$54$ | $4$ | $(1,5,2,4)(6,9)$ | $0$ |
$54$ | $6$ | $(1,2)(3,8,7)(4,5)$ | $0$ |
$108$ | $6$ | $(1,9,6,5,2,4)(3,7)$ | $-1$ |
$72$ | $9$ | $(1,7,5,2,8,9,6,3,4)$ | $0$ |
$72$ | $9$ | $(1,8,9,6,7,5,2,3,4)$ | $0$ |
$54$ | $12$ | $(1,5,2,4)(3,7,8)(6,9)$ | $0$ |
$54$ | $12$ | $(1,5,2,4)(3,8,7)(6,9)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.