Properties

Label 12.123...099.18t218.a.a
Dimension $12$
Group $(((C_3 \times (C_3^2 : C_2)) : C_2) : C_3) : C_2$
Conductor $1.232\times 10^{17}$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $12$
Group: $(((C_3 \times (C_3^2 : C_2)) : C_2) : C_3) : C_2$
Conductor: \(123218946725049099\)\(\medspace = 3^{15} \cdot 97^{5} \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 9.1.47048089623921.1
Galois orbit size: $1$
Smallest permutation container: 18T218
Parity: odd
Determinant: 1.291.2t1.a.a
Projective image: $C_3^3:S_4$
Projective stem field: Galois closure of 9.1.47048089623921.1

Defining polynomial

$f(x)$$=$ \( x^{9} - 24x^{6} + 48x^{5} - 135x^{4} + 249x^{3} - 42x^{2} + 108x - 161 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 59 }$ to precision 10.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 59 }$: \( x^{3} + 5x + 57 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 15 a^{2} + 10 a + 50 + \left(55 a^{2} + 9 a + 26\right)\cdot 59 + \left(53 a^{2} + 56 a + 22\right)\cdot 59^{2} + \left(12 a^{2} + 37 a + 23\right)\cdot 59^{3} + \left(a^{2} + 54 a + 43\right)\cdot 59^{4} + \left(8 a^{2} + 37 a + 26\right)\cdot 59^{5} + \left(46 a^{2} + 16 a + 55\right)\cdot 59^{6} + \left(22 a^{2} + 25 a + 16\right)\cdot 59^{7} + \left(51 a^{2} + 42 a + 53\right)\cdot 59^{8} + \left(45 a^{2} + 31 a + 34\right)\cdot 59^{9} +O(59^{10})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 53 a^{2} + 12 a + 39 + \left(20 a^{2} + 31 a + 10\right)\cdot 59 + \left(17 a^{2} + 8 a + 38\right)\cdot 59^{2} + \left(16 a^{2} + 58 a + 34\right)\cdot 59^{3} + \left(6 a^{2} + 58 a + 40\right)\cdot 59^{4} + \left(13 a^{2} + 16 a + 43\right)\cdot 59^{5} + \left(21 a^{2} + 28 a + 11\right)\cdot 59^{6} + \left(40 a^{2} + 18 a + 36\right)\cdot 59^{7} + \left(22 a^{2} + 10 a + 16\right)\cdot 59^{8} + \left(43 a^{2} + 55 a + 46\right)\cdot 59^{9} +O(59^{10})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 24 a^{2} + 39 a + 21 + \left(28 a^{2} + 12 a + 55\right)\cdot 59 + \left(51 a^{2} + 36 a + 33\right)\cdot 59^{2} + \left(10 a^{2} + 43 a + 16\right)\cdot 59^{3} + \left(48 a^{2} + 10 a + 3\right)\cdot 59^{4} + \left(55 a^{2} + 56 a + 9\right)\cdot 59^{5} + \left(50 a^{2} + 45 a + 32\right)\cdot 59^{6} + \left(12 a^{2} + 49 a + 3\right)\cdot 59^{7} + \left(18 a^{2} + 41 a + 41\right)\cdot 59^{8} + \left(42 a^{2} + 39 a + 42\right)\cdot 59^{9} +O(59^{10})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 17 + 59 + 22\cdot 59^{2} + 21\cdot 59^{3} + 12\cdot 59^{4} + 38\cdot 59^{5} + 21\cdot 59^{6} + 18\cdot 59^{7} + 45\cdot 59^{8} + 46\cdot 59^{9} +O(59^{10})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 12 + 41\cdot 59 + 56\cdot 59^{2} + 6\cdot 59^{3} + 46\cdot 59^{4} + 29\cdot 59^{5} + 4\cdot 59^{6} + 49\cdot 59^{7} + 57\cdot 59^{8} + 41\cdot 59^{9} +O(59^{10})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 50 a^{2} + 37 a + 29 + \left(41 a^{2} + 18 a + 21\right)\cdot 59 + \left(46 a^{2} + 53 a + 57\right)\cdot 59^{2} + \left(29 a^{2} + 21 a\right)\cdot 59^{3} + \left(51 a^{2} + 4 a + 34\right)\cdot 59^{4} + \left(37 a^{2} + 4 a + 47\right)\cdot 59^{5} + \left(50 a^{2} + 14 a + 50\right)\cdot 59^{6} + \left(54 a^{2} + 15 a + 5\right)\cdot 59^{7} + \left(43 a^{2} + 6 a + 48\right)\cdot 59^{8} + \left(28 a^{2} + 31 a + 36\right)\cdot 59^{9} +O(59^{10})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 19 a^{2} + 52 a + 24 + \left(35 a^{2} + 31 a + 19\right)\cdot 59 + \left(32 a^{2} + 3 a + 10\right)\cdot 59^{2} + \left(22 a^{2} + 9 a + 16\right)\cdot 59^{3} + \left(27 a^{2} + 22 a + 32\right)\cdot 59^{4} + \left(47 a^{2} + 12 a + 20\right)\cdot 59^{5} + \left(6 a^{2} + a + 42\right)\cdot 59^{6} + \left(43 a^{2} + 50 a + 25\right)\cdot 59^{7} + \left(23 a^{2} + 42 a\right)\cdot 59^{8} + \left(24 a^{2} + 3 a + 42\right)\cdot 59^{9} +O(59^{10})\) Copy content Toggle raw display
$r_{ 8 }$ $=$ \( 16 a^{2} + 27 a + 14 + \left(54 a^{2} + 14 a + 43\right)\cdot 59 + \left(33 a^{2} + 19 a + 14\right)\cdot 59^{2} + \left(25 a^{2} + 6 a + 26\right)\cdot 59^{3} + \left(42 a^{2} + 26 a + 23\right)\cdot 59^{4} + \left(14 a^{2} + 49 a + 29\right)\cdot 59^{5} + \left(a^{2} + 11 a + 43\right)\cdot 59^{6} + \left(3 a^{2} + 18 a + 29\right)\cdot 59^{7} + \left(17 a^{2} + 33 a + 17\right)\cdot 59^{8} + \left(51 a^{2} + 15 a + 33\right)\cdot 59^{9} +O(59^{10})\) Copy content Toggle raw display
$r_{ 9 }$ $=$ \( 30 + 16\cdot 59 + 39\cdot 59^{2} + 30\cdot 59^{3} + 50\cdot 59^{5} + 32\cdot 59^{6} + 50\cdot 59^{7} + 14\cdot 59^{8} + 29\cdot 59^{9} +O(59^{10})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,3,4)(2,7,5)(6,8,9)$
$(3,7,8)$
$(3,5,7,4)(8,9)$
$(4,5,9)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character value
$1$$1$$()$$12$
$27$$2$$(1,2)(4,5)$$0$
$54$$2$$(1,4)(2,5)(3,7)(6,9)$$2$
$6$$3$$(1,2,6)$$0$
$8$$3$$(1,2,6)(3,7,8)(4,5,9)$$3$
$12$$3$$(1,2,6)(3,7,8)$$-3$
$72$$3$$(1,3,4)(2,7,5)(6,8,9)$$0$
$54$$4$$(1,5,2,4)(6,9)$$0$
$54$$6$$(1,2)(3,8,7)(4,5)$$0$
$108$$6$$(1,9,6,5,2,4)(3,7)$$-1$
$72$$9$$(1,7,5,2,8,9,6,3,4)$$0$
$72$$9$$(1,8,9,6,7,5,2,3,4)$$0$
$54$$12$$(1,5,2,4)(3,7,8)(6,9)$$0$
$54$$12$$(1,5,2,4)(3,8,7)(6,9)$$0$

The blue line marks the conjugacy class containing complex conjugation.