Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 113 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 113 }$: $ x^{2} + 101 x + 3 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 23 a + 80 + \left(43 a + 75\right)\cdot 113 + \left(104 a + 69\right)\cdot 113^{2} + \left(a + 98\right)\cdot 113^{3} + \left(29 a + 104\right)\cdot 113^{4} +O\left(113^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 74 a + 93 + \left(81 a + 50\right)\cdot 113 + \left(61 a + 28\right)\cdot 113^{2} + \left(101 a + 41\right)\cdot 113^{3} + \left(7 a + 22\right)\cdot 113^{4} +O\left(113^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 13 a + 71 + \left(5 a + 52\right)\cdot 113 + \left(54 a + 58\right)\cdot 113^{2} + \left(96 a + 13\right)\cdot 113^{3} + \left(96 a + 74\right)\cdot 113^{4} +O\left(113^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 39 a + 77 + \left(31 a + 52\right)\cdot 113 + \left(51 a + 9\right)\cdot 113^{2} + \left(11 a + 68\right)\cdot 113^{3} + \left(105 a + 15\right)\cdot 113^{4} +O\left(113^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 90 a + 17 + \left(69 a + 6\right)\cdot 113 + \left(8 a + 36\right)\cdot 113^{2} + \left(111 a + 17\right)\cdot 113^{3} + \left(83 a + 112\right)\cdot 113^{4} +O\left(113^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 100 a + 1 + \left(107 a + 101\right)\cdot 113 + \left(58 a + 23\right)\cdot 113^{2} + \left(16 a + 100\right)\cdot 113^{3} + \left(16 a + 9\right)\cdot 113^{4} +O\left(113^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 6 }$
| Cycle notation |
| $(1,2)$ |
| $(1,2,3,4,5,6)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 6 }$
| Character value |
| $1$ | $1$ | $()$ | $10$ |
| $15$ | $2$ | $(1,2)(3,4)(5,6)$ | $2$ |
| $15$ | $2$ | $(1,2)$ | $-2$ |
| $45$ | $2$ | $(1,2)(3,4)$ | $-2$ |
| $40$ | $3$ | $(1,2,3)(4,5,6)$ | $1$ |
| $40$ | $3$ | $(1,2,3)$ | $1$ |
| $90$ | $4$ | $(1,2,3,4)(5,6)$ | $0$ |
| $90$ | $4$ | $(1,2,3,4)$ | $0$ |
| $144$ | $5$ | $(1,2,3,4,5)$ | $0$ |
| $120$ | $6$ | $(1,2,3,4,5,6)$ | $-1$ |
| $120$ | $6$ | $(1,2,3)(4,5)$ | $1$ |
The blue line marks the conjugacy class containing complex conjugation.