Properties

Label 10.67e6_2417e6.30t176.1
Dimension 10
Group $S_6$
Conductor $ 67^{6} \cdot 2417^{6}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$10$
Group:$S_6$
Conductor:$18034691539028338033511975802361= 67^{6} \cdot 2417^{6} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} + x^{4} - 2 x^{3} - x^{2} + 3 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 30T176
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 181 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 181 }$: $ x^{2} + 177 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 128 + 137\cdot 181 + 8\cdot 181^{2} + 150\cdot 181^{3} + 5\cdot 181^{4} +O\left(181^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 90 a + 137 + \left(174 a + 180\right)\cdot 181 + \left(89 a + 174\right)\cdot 181^{2} + \left(103 a + 61\right)\cdot 181^{3} + \left(169 a + 173\right)\cdot 181^{4} +O\left(181^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 123 a + 141 + \left(17 a + 49\right)\cdot 181 + \left(160 a + 131\right)\cdot 181^{2} + \left(80 a + 14\right)\cdot 181^{3} + \left(38 a + 22\right)\cdot 181^{4} +O\left(181^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 91 a + 135 + \left(6 a + 64\right)\cdot 181 + \left(91 a + 179\right)\cdot 181^{2} + \left(77 a + 23\right)\cdot 181^{3} + \left(11 a + 24\right)\cdot 181^{4} +O\left(181^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 95 + 112\cdot 181 + 18\cdot 181^{2} + 114\cdot 181^{3} + 41\cdot 181^{4} +O\left(181^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 58 a + 90 + \left(163 a + 178\right)\cdot 181 + \left(20 a + 29\right)\cdot 181^{2} + \left(100 a + 178\right)\cdot 181^{3} + \left(142 a + 94\right)\cdot 181^{4} +O\left(181^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $10$
$15$ $2$ $(1,2)(3,4)(5,6)$ $2$
$15$ $2$ $(1,2)$ $-2$
$45$ $2$ $(1,2)(3,4)$ $-2$
$40$ $3$ $(1,2,3)(4,5,6)$ $1$
$40$ $3$ $(1,2,3)$ $1$
$90$ $4$ $(1,2,3,4)(5,6)$ $0$
$90$ $4$ $(1,2,3,4)$ $0$
$144$ $5$ $(1,2,3,4,5)$ $0$
$120$ $6$ $(1,2,3,4,5,6)$ $-1$
$120$ $6$ $(1,2,3)(4,5)$ $1$
The blue line marks the conjugacy class containing complex conjugation.