Properties

Label 10.5e6_103e6_127e6.30t176.1c1
Dimension 10
Group $S_6$
Conductor $ 5^{6} \cdot 103^{6} \cdot 127^{6}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$10$
Group:$S_6$
Conductor:$78282682652003583559601265625= 5^{6} \cdot 103^{6} \cdot 127^{6} $
Artin number field: Splitting field of $f= x^{6} - x^{5} + 2 x^{4} - 2 x^{3} - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 30T176
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: $ x^{2} + 29 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 20 a + 12 + \left(19 a + 4\right)\cdot 31 + \left(28 a + 14\right)\cdot 31^{2} + \left(30 a + 30\right)\cdot 31^{3} + \left(8 a + 7\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 11 a + 21 + \left(11 a + 23\right)\cdot 31 + \left(2 a + 20\right)\cdot 31^{2} + 31^{3} + \left(22 a + 26\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 8 a + 30 + \left(14 a + 16\right)\cdot 31 + \left(13 a + 12\right)\cdot 31^{2} + 27\cdot 31^{3} + \left(12 a + 23\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 19 a + 20 + \left(21 a + 8\right)\cdot 31 + \left(15 a + 5\right)\cdot 31^{2} + 31^{3} + \left(8 a + 17\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 23 a + 15 + \left(16 a + 6\right)\cdot 31 + \left(17 a + 25\right)\cdot 31^{2} + \left(30 a + 14\right)\cdot 31^{3} + \left(18 a + 16\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 12 a + 27 + \left(9 a + 1\right)\cdot 31 + \left(15 a + 15\right)\cdot 31^{2} + \left(30 a + 17\right)\cdot 31^{3} + \left(22 a + 1\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$10$
$15$$2$$(1,2)(3,4)(5,6)$$2$
$15$$2$$(1,2)$$-2$
$45$$2$$(1,2)(3,4)$$-2$
$40$$3$$(1,2,3)(4,5,6)$$1$
$40$$3$$(1,2,3)$$1$
$90$$4$$(1,2,3,4)(5,6)$$0$
$90$$4$$(1,2,3,4)$$0$
$144$$5$$(1,2,3,4,5)$$0$
$120$$6$$(1,2,3,4,5,6)$$-1$
$120$$6$$(1,2,3)(4,5)$$1$
The blue line marks the conjugacy class containing complex conjugation.