Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 73 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 73 }$: $ x^{2} + 70 x + 5 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 40 + 15\cdot 73 + 43\cdot 73^{2} + 33\cdot 73^{3} + 30\cdot 73^{4} +O\left(73^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 47 + 27\cdot 73 + 48\cdot 73^{2} + 54\cdot 73^{3} + 59\cdot 73^{4} +O\left(73^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 61 a + 56 + \left(69 a + 68\right)\cdot 73 + \left(13 a + 32\right)\cdot 73^{2} + \left(32 a + 68\right)\cdot 73^{3} + \left(58 a + 5\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 58 + 32\cdot 73 + 12\cdot 73^{3} + 31\cdot 73^{4} +O\left(73^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 71 + 2\cdot 73 + 16\cdot 73^{2} + 45\cdot 73^{3} + 15\cdot 73^{4} +O\left(73^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 12 a + 20 + \left(3 a + 71\right)\cdot 73 + \left(59 a + 4\right)\cdot 73^{2} + \left(40 a + 5\right)\cdot 73^{3} + \left(14 a + 3\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 6 }$
| Cycle notation |
| $(1,2)$ |
| $(1,2,3,4,5,6)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 6 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$10$ |
| $15$ |
$2$ |
$(1,2)(3,4)(5,6)$ |
$-2$ |
| $15$ |
$2$ |
$(1,2)$ |
$2$ |
| $45$ |
$2$ |
$(1,2)(3,4)$ |
$-2$ |
| $40$ |
$3$ |
$(1,2,3)(4,5,6)$ |
$1$ |
| $40$ |
$3$ |
$(1,2,3)$ |
$1$ |
| $90$ |
$4$ |
$(1,2,3,4)(5,6)$ |
$0$ |
| $90$ |
$4$ |
$(1,2,3,4)$ |
$0$ |
| $144$ |
$5$ |
$(1,2,3,4,5)$ |
$0$ |
| $120$ |
$6$ |
$(1,2,3,4,5,6)$ |
$1$ |
| $120$ |
$6$ |
$(1,2,3)(4,5)$ |
$-1$ |
The blue line marks the conjugacy class containing complex conjugation.